Suppr超能文献

线粒体 NUDIX 水解酶:NAD 分解代谢、GTP 和线粒体动态之间的代谢联系。

Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

机构信息

Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, United States.

Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, United States; Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), United States; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States.

出版信息

Neurochem Int. 2017 Oct;109:193-201. doi: 10.1016/j.neuint.2017.03.009. Epub 2017 Mar 14.

Abstract

NAD catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics.

摘要

NAD 分解代谢和线粒体动力学是正常线粒体功能的重要组成部分,两者在衰老、神经退行性疾病和急性脑损伤中都被报道存在破坏。虽然这两个过程都已经被广泛研究,但关于这两个过程的机制如何相互关联的报道却很少。本综述重点讨论了在病理条件下,通过 NUDIX 水解酶进行的 NAD 分解代谢的下游途径如何影响线粒体动力学。此外,还讨论了几种线粒体功能障碍和碎片化的潜在靶点,包括线粒体多聚(ADP-核糖)聚合酶 1(mtPARP1)、AMPK、AMP 和线粒体内部 GTP 代谢的作用。线粒体和细胞质 NUDIX 水解酶(NUDT9α 和 NUDT9β)可以通过水解 ADP-核糖(ADPr)来影响线粒体和细胞内的 AMP 水平,从而改变 GTP 和 ATP 的水平。多聚(ADP-核糖)聚合酶 1(PARP1)在 DNA 损伤后被激活,这会耗尽 NAD 池并导致核蛋白和线粒体蛋白的 PAR 化。在线粒体中,ADP-核糖基水解酶-3(ARH3)水解 PAR 产生 ADPr,而 NUDT9α 将 ADPr 代谢为 AMP。据报道,AMP 水平升高会通过抑制腺嘌呤核苷酸转运体(ANT)、通过改变细胞内 AMP:ATP 比值来别构激活 AMPK、以及通过被腺苷酸激酶 3(AK3)磷酸化来耗尽线粒体 GTP 池(AK3 以 GTP 为磷酸供体)来减少线粒体 ATP 的产生。最近,激活的 AMPK 被报道可以磷酸化线粒体分裂因子(MFF),这会增加 Drp1 在线粒体上的定位并促进线粒体分裂。此外,增加的 AK3 活性可能会耗尽线粒体 GTP 池,并可能抑制 GTP 依赖性融合酶的正常活性,从而改变线粒体动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验