Suppr超能文献

蛋白酶激活受体2(PAR2)通过瞬时受体电位香草酸受体4(TRPV4)诱导海马体中的长时程抑制。

Protease Activated Receptor 2 (PAR2) Induces Long-Term Depression in the Hippocampus through Transient Receptor Potential Vanilloid 4 (TRPV4).

作者信息

Shavit-Stein Efrat, Artan-Furman Avital, Feingold Ekaterina, Ben Shimon Marina, Itzekson-Hayosh Zeev, Chapman Joab, Vlachos Andreas, Maggio Nicola

机构信息

Department of Neurology, The Chaim Sheba Medical Center Tel HaShomer, Israel.

Department of Neurology, The Chaim Sheba Medical CenterTel HaShomer, Israel; Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel.

出版信息

Front Mol Neurosci. 2017 Mar 2;10:42. doi: 10.3389/fnmol.2017.00042. eCollection 2017.

Abstract

Protease activated receptors (PARs) are involved in regulating synaptic transmission and plasticity in the brain. While it is well-accepted that PAR1 mediates long-term potentiation (LTP) of excitatory synaptic strength, the role of PAR2 in synaptic plasticity remains not well-understood. In this study, we assessed the role of PAR2-signaling in plasticity at hippocampal Schaffer collateral-CA1 synapses. Using field potential recordings, we report that PAR2-activation leads to long-term depression (LTD) of synaptic transmission through a protein kinase A -dependent, Transient Receptor Potential Vanilloid 4 -mediated mechanism, which requires the activation of -methyl-D-aspartate receptors. These results demonstrate that the effects of PAR2 on synaptic plasticity are distinct from what is observed upon PAR1-activation. Thus, we propose that the activation of different classes of PARs, i.e., PAR1 and PAR2, may set the threshold of synaptic plasticity in the hippocampal network by balancing LTP and LTD.

摘要

蛋白酶激活受体(PARs)参与调节大脑中的突触传递和可塑性。虽然人们普遍认为PAR1介导兴奋性突触强度的长期增强(LTP),但PAR2在突触可塑性中的作用仍未得到充分理解。在本研究中,我们评估了PAR2信号在海马体沙费尔侧支 - CA1突触可塑性中的作用。通过场电位记录,我们报告PAR2激活通过蛋白激酶A依赖性、瞬时受体电位香草酸亚型4介导的机制导致突触传递的长期抑制(LTD),这需要N - 甲基 - D - 天冬氨酸受体的激活。这些结果表明PAR2对突触可塑性的影响与PAR1激活时所观察到的不同。因此,我们提出激活不同类别的PARs,即PAR1和PAR2,可能通过平衡LTP和LTD来设定海马体网络中突触可塑性的阈值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f2/5332813/8f1e2c04f69a/fnmol-10-00042-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验