Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
Nanoscale. 2017 Mar 30;9(13):4467-4477. doi: 10.1039/c6nr08036g.
Platonic solids such as polyhedra based on DNA have been deployed for multifarious applications such as RNAi delivery, biological targeting and bioimaging. All of these applications hinge on the capability of DNA polyhedra for molecular display with high spatial precision. Therefore high resolution structural models of such polyhedra are critical to widen their applications in both materials and biology. Here, we present an atomistic model of a well-characterized DNA icosahedron, with demonstrated versatile functionalities in biological systems. We study the structure and dynamics of this DNA icosahedron using fully atomistic molecular dynamics (MD) simulation in explicit water and ions. The major modes of internal motion have been identified using principal component analysis. We provide a quantitative estimate of the radius of gyration (R), solvent accessible surface area (SASA) and volume of the icosahedron which is essential to estimate its maximal cargo carrying capacity. Importantly, our simulation of gold nanoparticles (AuNPs) encapsulated within DNA icosahedra revealed enhanced stability of the AuNP loaded DNA icosahedra compared to empty icosahedra. This is consistent with the experimental results that show high yields of cargo-encapsulated DNA icosahedra that have led to its diverse applications for precision targeting. These studies reveal that the stabilizing interactions between the cargo and the DNA scaffold powerfully position DNA polyhedra as targetable nanocapsules for payload delivery. These insights can be exploited for precise molecular display for diverse biological applications.
基于 DNA 的柏拉图立体(如多面体)已被用于多种应用,如 RNAi 递药、生物靶向和生物成像。所有这些应用都依赖于 DNA 多面体在分子显示方面具有高空间精度的能力。因此,这些多面体的高分辨率结构模型对于拓宽它们在材料和生物学中的应用至关重要。在这里,我们提出了一种具有高度特征化的 DNA 二十面体的原子模型,该模型在生物系统中具有多种功能。我们使用全原子分子动力学(MD)模拟在明确定义的水中和离子中研究这种 DNA 二十面体的结构和动力学。使用主成分分析确定了内部运动的主要模式。我们提供了该二十面体的旋转半径(R)、溶剂可及表面积(SASA)和体积的定量估计,这对于估计其最大载物能力至关重要。重要的是,我们对金纳米粒子(AuNPs)封装在 DNA 二十面体中的模拟结果表明,与空二十面体相比,负载 AuNP 的 DNA 二十面体具有更高的稳定性。这与实验结果一致,实验结果表明,封装货物的 DNA 二十面体的产量很高,这导致了其在精确靶向方面的多种应用。这些研究表明,货物与 DNA 支架之间的稳定相互作用有力地将 DNA 多面体定位为可靶向的纳米胶囊,用于有效载荷传递。这些见解可用于各种生物应用的精确分子显示。