Suppr超能文献

[桃蚜小蜂(双翅目)卵中质因子区域的运动学与超微结构:II. 处于四个分裂核阶段的卵离心后卵质部分系统的行为]

[Kinematics and ultrastructure of plasmic factor regions in the egg of Wachtliella persicariae L. (Diptera) : II. The behaviour of ooplasmic partial systems after centrifugation of eggs in the stage of four cleavage nuclei].

作者信息

Wolf Rainer

机构信息

Zoologisches Institut I der Universität Würzburg, Deutschland.

出版信息

Wilhelm Roux Arch Entwickl Mech Org. 1969 Mar;163(1):40-80. doi: 10.1007/BF00576986.

Abstract

Kinematics and ultrastructure of centrifuged and untreated eggs fromWachtliella persicariae were investigated for the micromorphological properties of ooplasmic factor regions and their role in early developmental processes by means of time-lapse motion pictures and electron microscopic analysis (see part I).After centrifugation the eggs show up to five different layers, among them a pole of fatty yolk with lipid droplets, a region of clear plasm (rich in ground plasm) which itself may become subdivided into a centripetal region with nuclei and endoplasmic reticulum, followed by a centrifugal part with mitochondria and ribosomes, another region containing orange clods of proteid yolk and finally a cup of glycogen. Displacement of pole plasm from the posterior pole always is accompanied by dislocation of the basophilic oosome material contained therein. At sufficient r.p.m. both of them enter the centripetal area of clear plasm. Structures of "di-polar density" type are orientated by centrifugation. The initial phase till the centrifuge reaches its final r.p.m. may act decicively upon the site of certain egg components after centrifugation as upon the nuclei, and thus may essentially influence the experimental results. In case centrifugation coincides with certain dividing phases of energides, the nuclear envelope becomes fragmented. The fragments then may appear piled up to form annulated membranes which have been recognized as pathological structures in centrifuged eggs. Besides lamellar cytosomes are often found. In centrifuged as well as in untreated eggs the nuclear envelope either consists of two layers as usual or may be of the complex multi-layered type (see part I). As for the movement of nuclei, the possible role of the complex nuclear envelope is not yet clear. The pigment halo of cleavage nuclei does not play an active part in nuclear migration. In centrifuged eggs yolk nuclei are of the usual type i.e. either roundish, horse-shoe-shaped or multi-lobed. They mostly appear in parts of the entoplasm which are poor in yolk. A surrounding rich in yolk does not seem to be essential for transforming normal cleavage nuclei into vitellophagues. For their changing into the multi-lobed type yolk nuclei must be surrounded by a sufficient amount of ground plasm.Pole cells have been found in the posterior pole region only. Their formation requires an abundant amount of ground plasm, the presence of cleavage energides, as well as pole plasm and oosome material, if not either of the two latter systems. Since in centrifuged eggs pole plasm and basophilic oosome material are always shifted together into the region of clear plasm, contrary to the opinion of other authors (p. 42; part I, p. 124) the technique of centrifugation does not permit any decision as to which of both ooplasmic systems controls the karyotic differentiation of the germ line or the formation of pole cells, respectively, or whether both systems are essential to promote these processes.The oolemma may also become invaginated to form cell membranes when no nuclei are present ("pseudoblastoderm"), the formation occurring in regions with sufficient amounts of ground plasm only. For that reason the formation of pole cells is restricted to the posterior pole rich in ground plasm, whereas blastoderm cells exclusively occur in the area of preblastoderm plasm. The ground plasm plays a decisive part in the dynamics of cell membrane formation. As for blastoderm cells, the nuclei seem to be necessary only to control their regular shape. In contradiction to the opinion of other authors (p. 42, part I, p. 124), the periplasm of young eggs cannot range among the essential prerequisites of blastoderm formation. During centrifugation it does not stay at the surface of the egg poles where nevertheless a blastoderm may be formed. Yet blastoderm formation is only possible if, in spite of the compact condition of polar yolk material, the egg poles become covered with preblastoderm plasm from the region of clear plasm, rich in ground plasm, and thus replacing sufficient amounts of periplasm and ground plasm shifted by centrifugation.

摘要

通过延时动态图像和电子显微镜分析(见第一部分),研究了桃蚜茧蜂经离心处理和未经处理的卵的运动学和超微结构,以了解卵质因子区域的微观形态特征及其在早期发育过程中的作用。离心后,卵呈现出多达五层不同的结构,其中包括一个含有脂滴的脂肪性卵黄极,一个透明质区域(富含基本质),该区域本身可能再细分为一个含有细胞核和内质网的向心区域,随后是一个含有线粒体和核糖体的离心部分,另一个含有蛋白质卵黄橙色团块的区域,最后是一杯糖原。极质从后极的位移总是伴随着其中所含嗜碱性卵核物质的错位。在足够的转速下,它们两者都进入透明质的向心区域。“双极密度”类型的结构通过离心进行定向排列。直到离心机达到最终转速的初始阶段,可能对离心后某些卵成分的位置(如细胞核)起决定性作用,从而可能从根本上影响实验结果。如果离心与某些胚子的分裂阶段同时发生,核膜会破碎。这些碎片随后可能堆积形成环状膜,这在离心后的卵中被认为是病理结构。此外,经常会发现层状细胞小体。在离心处理的卵和未经处理的卵中,核膜通常由两层组成,也可能是复杂的多层类型(见第一部分)。至于细胞核的移动,复杂核膜的可能作用尚不清楚。分裂细胞核的色素晕在核迁移中不起积极作用。在离心后的卵中,卵黄核是常见的类型,即圆形、马蹄形或多叶形。它们大多出现在卵黄较少的内细胞质部分。富含卵黄的周围环境似乎对于将正常分裂细胞核转变为卵黄吞噬细胞并非必不可少。为了转变为多叶形卵黄核,卵黄核必须被足够量的基本质所包围。仅在后极区域发现了极细胞。它们的形成需要大量的基本质、分裂胚子的存在,以及极质和卵核物质,如果不是后两者中的任何一个系统的话。由于在离心后的卵中,极质和嗜碱性卵核物质总是一起转移到透明质区域,与其他作者的观点(第42页;第一部分,第124页)相反,离心技术无法确定这两个卵质系统中的哪一个分别控制生殖系的核分化或极细胞的形成,或者这两个系统对于促进这些过程是否都是必不可少的。当没有细胞核时(“假胚盘”),卵膜也可能内陷形成细胞膜,这种形成仅发生在基本质含量充足的区域。因此,极细胞的形成仅限于富含基本质的后极,而胚盘细胞仅出现在胚盘前质区域。基本质在细胞膜形成的动态过程中起决定性作用。至于胚盘细胞,细胞核似乎仅对控制其规则形状是必要的。与其他作者的观点(第42页,第一部分,第124页)相反,年轻卵的周质不能列为胚盘形成的基本先决条件之一。在离心过程中,它不会停留在卵极的表面,而在那里仍可能形成胚盘。然而,只有当尽管极卵黄物质致密,但卵极被来自富含基本质的透明质区域的胚盘前质所覆盖,从而取代因离心而移位的足够量的周质和基本质时,胚盘形成才有可能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验