Suppr超能文献

[关于X射线对黄蛞蝓(Limax flavus L.)齿舌替换影响的研究]

[Investigations into the X-ray-influenced radula-replacement in the naked snail Limax flavus L.].

作者信息

Kerth Klaus, Krause Gerhard

机构信息

I. Zoologisches Institut der Universität Würzburg, Deutschland.

Abteilung Entwicklungsphysiologie des Heiligenberg-Instituts Heiligenberg, Deutschland.

出版信息

Wilhelm Roux Arch Entwickl Mech Org. 1969 Mar;164(1):48-82. doi: 10.1007/BF00577681.

Abstract
  1. The naked snailLimax flavus L. has a radula with longitudinal rows of uniform teeth and cross-rows of teeth with a gradually changing form towards the radula's edge in regular succession, (Fig. 1). The individual tooth sits on the front part of a basal plate. This lies on the radula membrane (Fig. 2). 2. The radula is constantly shortened at its frontal end and is continuously renewed at the rear end of the radula gland. - This is an epidermal fold of the mouth cavity. At this place of radula-development lies a region of large secretion-cells, the odontoblasts. These are arranged together in groups (Fig. 10, 11 and 13). Each longitudinal toothrow with the underlying membrane, is produced by one group of odontoblasts. Each group for a lateral tooth in the medial region of the radula consists of 15 cells. During the substitution of the cross-row processes of developing teeth in the medial part get more and more ahead of those at the edge. 3. In an odontoblasts-group one finds division of labour. The front cells produce membrane material and the basal plate. The rear cells of the group produce the tooth. During the formation of the tooth the rear cells change their apical surface profile. The form of the tooth's upperside corresponds to the apical profile of cells at the beginning of secretion (Fig. 14a, 15a, b). The form of the tooth's furrow responds to that of the apical odontoblasts-profile at the end of secretion (Fig. 14b, 15c). The odontoblasts are exclusively responsible for the definitive shape of the tooth. 4. After a single whole-body X-irradiation of young snails (dosis-range: 8,050-130,000 R, Table 2) a characteristically changed pattern of teeth arises. A region of cross-rows, following each other closer than normal, extends across the radula (Fig. 4, 80,500 R). The condensation of cross-rows depends on the dosis (Fig. 8, broken-lined graph). Slides show an abnormal form and irregular position of teeth and their basal plate (comp. Fig. 2a, b and 17). 5. The radula replacement system shows great resistance against X-rays. Up to a dosis of 113,000 R it is able to recover. It can again develop more or less normally formed and situated teeth and basal plates. Only after a dosis of 130,000 R (LD:6 days, Table 2) odontoblasts do not recover, although they produce up to 9 cross-rows before the death of the snails. 6. After irradiation of a snail's body with 64,400 R, the head being shielded, the radula remains without traces of this treatment (comp. Fig. 5, whole-body X-irradiation with 64,400 R). 7. After irradiation with low R-dosis an insignificant defect-streak develops across the radula. This was used as time-mark in order to count the cross-rows which have grown until preparation of the radula or setting of a second defect-mark. Hereby an average rate of replacement per day can be established, which may be looked upon as normal. The rate of 3.1 cross-rows per day with 48 day old snails falls to 1.4 cross-rows per day with 1 to 2.5 year old animals (Fig. 7, drawn-out graph). The average normal tooth-length increases with the age (Fig. 7, broken-lined graph). 8. To examine the effect of rising R-dosis on the rate of replacement, the cross-rows are counted which developed within 12 days after exposure (dosis: 8,050-80,500 R, Table 2 a-e). The number of cross-rows is reduced with rising dosis (Fig. 8, drawn-out graph). 9. After irradiation with 96,600 and 113,000 R groups of young snails were killed in periods of 12-168 hours after exposure (Fig. 9) to determine the actual daily replacementrate of cross-rows resulting to a high dosis. In the first 24 hours after 113,000 R the radula replacement is strongly reduced (Fig. 9, drawn-out graph). From 24-168 hours about 2.0 new cross-rows developed daily, compared to a normal rate of 2.9 cross-rows daily in animals of the same age. The pattern of malformation in the radula after a high dosis develops with slackened but very continuous replacement-rate of rows (comp. Fig. 9, broken-lined graph for 96,600 R). 10. In the epithelium at the back of the radula gland one finds several very different damages. The mitotically very active proliferation zones directly anterior and posterior to the odontoblasts-zone are considerably damaged. From 96 hours after exposure, there can be found lots of pycnotic nuclei (Fig. 18b). Extensive gaps appear in the tissue. On the other hand the odontoblasts-zone has a great compatibility against X-rays. Even 168 hours after exposure the odontoblasts are found to be completely existant. They were able to develop 12-15 cross-rows after irradiation. Merely the appearence of the odontoblasts changes. The front cells of the odontoblasts-group are lower, the posterior ones slimmer than normal. The number of radula glands with changed odontoblasts increases up to 96 hours after exposure, and decreases again until 168 hours after exposure. 11. The irregular slim rear odontoblasts have a narrowed apical area for tooth-formation (comp. Nr. 3 of the summary). Thus the tooth produced by these cells is shorter than normal. 12. The hypothesis of odontoblast-substitution states that the cells which develop the radula are continuously replaced by cells of the end-epithelium lying behind the odontoblasts-zone. After irradiation with 113,000 R replacement can not have taken place, as the tissue directly anterior and posterior to the odontoblasts-zone was extremely damaged. The odontoblasts were permanently active during the time of experiment, 168 hours after exposure. Finally they could again produce regular teeth. These findings supportthe hypothesis of the permanenec of odontoblasts.
摘要
  1. 裸蜗牛黄蛞蝓(Limax flavus L.)的齿舌具有纵向排列的均匀齿列以及横向齿列,横向齿列的齿形朝着齿舌边缘呈规则的逐渐变化(图1)。单个齿位于基板的前部。基板位于齿舌膜上(图2)。2. 齿舌在其前端不断缩短,并在齿舌腺的后端持续更新。齿舌腺是口腔的表皮褶皱。在齿舌发育的这个部位有一个由大分泌细胞组成的区域,即成齿细胞。这些细胞成群排列(图10、11和13)。每排纵向齿以及其下方的膜由一组成齿细胞产生。齿舌中间区域的每组侧齿由15个细胞组成。在发育中的牙齿的横向齿突替换过程中,中间部分比边缘部分越来越超前。3. 在一组成齿细胞中存在分工。前面的细胞产生膜材料和基板。该组后面的细胞产生牙齿。在牙齿形成过程中,后面的细胞会改变其顶端表面轮廓。牙齿上表面的形状与分泌开始时细胞的顶端轮廓相对应(图14a、15a、b)。牙齿沟槽的形状与分泌结束时顶端成齿细胞的轮廓相对应(图14b、15c)。成齿细胞完全决定牙齿的最终形状。4. 对幼蜗牛进行单次全身X射线照射(剂量范围:8050 - 130000伦琴,表2)后,会出现特征性的牙齿变化模式。一排横向齿比正常情况更紧密地排列在一起,横跨齿舌(图4,80500伦琴)。横向齿的密集程度取决于剂量(图8,虚线图)。切片显示牙齿及其基板的形状异常和位置不规则(比较图2a、b和17)。5. 齿舌替换系统对X射线具有很强的抵抗力。剂量高达113000伦琴时,它能够恢复。它能够再次发育出或多或少正常形成和排列的牙齿及基板。只有在剂量达到130000伦琴(半数致死剂量:6天,表2)后,成齿细胞才无法恢复,尽管它们在蜗牛死亡前能产生多达9排横向齿。6. 用64400伦琴照射蜗牛身体,头部屏蔽,齿舌未留下此次处理的痕迹(比较图5,全身64400伦琴X射线照射)。7. 用低剂量伦琴照射后,齿舌上会出现一条不明显的缺陷条纹。这被用作时间标记,以便计算在制备齿舌或设置第二个缺陷标记之前生长的横向齿排数。由此可以确定每天的平均替换率,可视为正常。48日龄蜗牛每天3.1排横向齿的替换率在1至2.5岁的动物中降至每天1.4排横向齿(图7,延长线图)。正常牙齿的平均长度随年龄增加(图7,虚线图)。8. 为了研究剂量增加的伦琴对替换率的影响,计算暴露后12天内发育的横向齿排数(剂量:8050 - 80500伦琴,表2 a - e)。横向齿排数随着剂量增加而减少(图8,延长线图)。9. 用96600和113000伦琴照射后,在暴露后12 - 168小时内杀死幼蜗牛组(图9),以确定高剂量导致的横向齿排的实际每日替换率。在113000伦琴照射后的前24小时,齿舌替换强烈减少(图9,延长线图)。在24 - 168小时内,每天约有2.0排新的横向齿发育,而同龄动物的正常速率为每天2.9排横向齿。高剂量后齿舌的畸形模式以排的替换率减缓但非常连续的方式发展(比较图9,96600伦琴的虚线图)。10. 在齿舌腺后面的上皮组织中发现了几种非常不同的损伤。成齿细胞区直接前后的有丝分裂非常活跃的增殖区受到严重损伤。暴露后96小时后,可以发现许多固缩核(图18b)。组织中出现大量间隙。另一方面,成齿细胞区对X射线具有很大的耐受性。即使在暴露后168小时,仍发现成齿细胞完全存在。它们在照射后能够发育出12 - 15排横向齿。只是成齿细胞的外观发生了变化。成齿细胞组前面的细胞比正常的低,后面的细胞比正常的更细长。暴露后96小时内,有成齿细胞变化的齿舌腺数量增加,到暴露后168小时又再次减少。11. 不规则细长的后部成齿细胞形成牙齿的顶端区域变窄(比较总结中的第3点)。因此,这些细胞产生的牙齿比正常的短。12. 成齿细胞替换假说指出,发育齿舌的细胞不断被位于成齿细胞区后面的终末上皮细胞所取代。用113000伦琴照射后,由于成齿细胞区直接前后的组织受到极大损伤,替换无法发生。在实验期间,即暴露后168小时,成齿细胞一直处于活跃状态。最后它们又能够产生规则的牙齿。这些发现支持了成齿细胞永久性的假说。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验