Suppr超能文献

斑块状宿主 - 寄生蜂相互作用中寄生现象的随机聚集反应和空间格局

Stochastic aggregative responses and spatial patterns of parasitism in patchy host-parasitoid interactions.

作者信息

Morrison Gerold

机构信息

Department of Entomology, University of Maryland, 20742, College Park, MD, USA.

出版信息

Oecologia. 1986 Oct;70(3):402-410. doi: 10.1007/BF00379503.

Abstract

Assuming random search by parasitoids within host-containing patches, and a constant search rate, current host-parasitoid models suggest that positive "searching time aggregation" by parasitoids in patches of high host density should tend to produce spatially density dependent parasitism at the patch level. However, these models view the aggregative response as a deterministic process, ignoring variability in searching time (T ) allocation among patches of equal host density, and it is not clear that stochastic analogues of these deterministic models would predict the same result.This question is examined by adding a stochastic aggregative response to the well-known "random parasitoid equation," the deterministic equation on which most existing models have been based. Simulations, based on data collected in an earlier laboratory study, indicate that this stochastic model generates very different relationships between parasitoid searching behavior and spatial patterns of parasitism than are predicted using the deterministic approach. The stochastic model suggests that "positive" aggregative responses, in which patches of high host density receive larger allocations of searching time (on the average) than patches containing lower densities, may fail to produce spatially density dependent parasitism at the patch level if searching time allocation is also more variable at the higher densities. Similarly, a "flat" response, in which mean searching times do not vary among patches of different host density, may lead to density dependent, density independent, or inversely density dependent parasitism, depending on the variance of the searching time values among patches at different density levels. The different predictions generated by the deterministic and stochastic models can be explained on purely mathematical grounds.When models are written in units of total foraging time (T ), different equations are usually required to describe the spatial features of host-parasitoid and predator-prey interactions. Because the model considered here is written in units of active searching time (T ) it should, in cases in which the underlying assumptions hold, be capable of describing these different interactions in the framework of a single ("unified") equation. This equation may also apply to some plant-herbivore systems and, to indicate its potential generality, might be referred to as a "random forager" equation.

摘要

假设寄生蜂在含有宿主的斑块内进行随机搜索,且搜索速率恒定,当前的宿主 - 寄生蜂模型表明,寄生蜂在高宿主密度斑块中的正向“搜索时间聚集”应倾向于在斑块水平上产生空间密度依赖性寄生现象。然而,这些模型将聚集反应视为一个确定性过程,忽略了在宿主密度相同的斑块间搜索时间(T)分配的变异性,并且尚不清楚这些确定性模型的随机类似物是否会预测出相同的结果。通过在著名的“随机寄生蜂方程”(大多数现有模型所基于的确定性方程)中添加随机聚集反应来研究这个问题。基于早期实验室研究收集的数据进行的模拟表明,与使用确定性方法预测的结果相比,这个随机模型在寄生蜂搜索行为和寄生空间模式之间产生了非常不同的关系。随机模型表明,如果在较高密度下搜索时间分配的变异性也更大,那么“正向”聚集反应(即高宿主密度斑块平均比低密度斑块获得更多搜索时间分配)可能无法在斑块水平上产生空间密度依赖性寄生现象。同样,“平坦”反应(即不同宿主密度斑块之间平均搜索时间不变)可能导致密度依赖性、密度独立性或反向密度依赖性寄生现象,这取决于不同密度水平斑块间搜索时间值的方差。确定性模型和随机模型产生的不同预测可以纯粹基于数学原理来解释。当模型以总觅食时间(T)为单位编写时,通常需要不同的方程来描述宿主 - 寄生蜂和捕食者 - 猎物相互作用的空间特征。因为这里考虑的模型是以主动搜索时间(T)为单位编写的,所以在基本假设成立的情况下,它应该能够在单个(“统一”)方程的框架内描述这些不同的相互作用。这个方程也可能适用于一些植物 - 食草动物系统,为表明其潜在的通用性,它可能被称为“随机觅食者”方程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验