Suppr超能文献

整合癌症药物基因组学推断大规模药物分类。

Integrative Cancer Pharmacogenomics to Infer Large-Scale Drug Taxonomy.

机构信息

Integrative Computational Systems Biology, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada.

Department of Biomedical Sciences. Université de Montréal, Montreal, Quebec, Canada.

出版信息

Cancer Res. 2017 Jun 1;77(11):3057-3069. doi: 10.1158/0008-5472.CAN-17-0096. Epub 2017 Mar 17.

Abstract

Identification of drug targets and mechanism of action (MoA) for new and uncharacterized anticancer drugs is important for optimization of treatment efficacy. Current MoA prediction largely relies on prior information including side effects, therapeutic indication, and chemoinformatics. Such information is not transferable or applicable for newly identified, previously uncharacterized small molecules. Therefore, a shift in the paradigm of MoA predictions is necessary toward development of unbiased approaches that can elucidate drug relationships and efficiently classify new compounds with basic input data. We propose here a new integrative computational pharmacogenomic approach, referred to as Drug Network Fusion (DNF), to infer scalable drug taxonomies that rely only on basic drug characteristics toward elucidating drug-drug relationships. DNF is the first framework to integrate drug structural information, high-throughput drug perturbation, and drug sensitivity profiles, enabling drug classification of new experimental compounds with minimal prior information. DNF taxonomy succeeded in identifying pertinent and novel drug-drug relationships, making it suitable for investigating experimental drugs with potential new targets or MoA. The scalability of DNF facilitated identification of key drug relationships across different drug categories, providing a flexible tool for potential clinical applications in precision medicine. Our results support DNF as a valuable resource to the cancer research community by providing new hypotheses on compound MoA and potential insights for drug repurposing. .

摘要

鉴定新的和未被表征的抗癌药物的药物靶点和作用机制(MoA)对于优化治疗效果非常重要。目前的 MoA 预测在很大程度上依赖于先前的信息,包括副作用、治疗适应症和化学生物信息学。这些信息不可转移或适用于新发现的、以前未被表征的小分子。因此,有必要改变 MoA 预测的范式,转向开发无偏的方法,这些方法可以阐明药物关系,并有效地对具有基本输入数据的新化合物进行分类。我们在这里提出了一种新的综合计算药物基因组学方法,称为药物网络融合(DNF),用于推断仅依赖于基本药物特征的可扩展药物分类法,以阐明药物-药物关系。DNF 是第一个整合药物结构信息、高通量药物干扰和药物敏感性谱的框架,能够对具有最小先验信息的新实验化合物进行药物分类。DNF 分类法成功地确定了相关和新颖的药物-药物关系,使其适合研究具有潜在新靶点或 MoA 的实验药物。DNF 的可扩展性促进了不同药物类别之间关键药物关系的识别,为精准医学中的潜在临床应用提供了灵活的工具。我们的结果支持 DNF 作为癌症研究界的有价值资源,为化合物 MoA 提供了新的假说,并为药物再利用提供了潜在的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验