文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用人工智能平台 GPAR 利用大规模基因表达谱对药物作用机制进行建模。

Modeling drug mechanism of action with large scale gene-expression profiles using GPAR, an artificial intelligence platform.

机构信息

Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China.

School of Instrumentation Science and Opto-Electronics Engineering and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100083, China.

出版信息

BMC Bioinformatics. 2021 Jan 7;22(1):17. doi: 10.1186/s12859-020-03915-6.


DOI:10.1186/s12859-020-03915-6
PMID:33413089
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7788535/
Abstract

BACKGROUND: Querying drug-induced gene expression profiles with machine learning method is an effective way for revealing drug mechanism of actions (MOAs), which is strongly supported by the growth of large scale and high-throughput gene expression databases. However, due to the lack of code-free and user friendly applications, it is not easy for biologists and pharmacologists to model MOAs with state-of-art deep learning approach. RESULTS: In this work, a newly developed online collaborative tool, Genetic profile-activity relationship (GPAR) was built to help modeling and predicting MOAs easily via deep learning. The users can use GPAR to customize their training sets to train self-defined MOA prediction models, to evaluate the model performances and to make further predictions automatically. Cross-validation tests show GPAR outperforms Gene set enrichment analysis in predicting MOAs. CONCLUSION: GPAR can serve as a better approach in MOAs prediction, which may facilitate researchers to generate more reliable MOA hypothesis.

摘要

背景:使用机器学习方法查询药物诱导的基因表达谱是揭示药物作用机制(MOA)的有效方法,这得到了大规模、高通量基因表达数据库的发展的有力支持。然而,由于缺乏无代码和用户友好的应用程序,生物学家和药理学家不容易使用最先进的深度学习方法来构建 MOA 模型。

结果:在这项工作中,开发了一个新的在线协作工具,称为遗传谱-活性关系(GPAR),用于通过深度学习轻松构建和预测 MOA。用户可以使用 GPAR 自定义训练集来训练自定义的 MOA 预测模型,评估模型性能并自动进行进一步预测。交叉验证测试表明,GPAR 在预测 MOA 方面优于基因集富集分析。

结论:GPAR 可以作为一种更好的 MOA 预测方法,这可能有助于研究人员生成更可靠的 MOA 假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffc/7788791/386bca8815d1/12859_2020_3915_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffc/7788791/7c96ce4b03b9/12859_2020_3915_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffc/7788791/0be171af969a/12859_2020_3915_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffc/7788791/6576d5954fca/12859_2020_3915_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffc/7788791/386bca8815d1/12859_2020_3915_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffc/7788791/7c96ce4b03b9/12859_2020_3915_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffc/7788791/0be171af969a/12859_2020_3915_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffc/7788791/6576d5954fca/12859_2020_3915_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fffc/7788791/386bca8815d1/12859_2020_3915_Fig4_HTML.jpg

相似文献

[1]
Modeling drug mechanism of action with large scale gene-expression profiles using GPAR, an artificial intelligence platform.

BMC Bioinformatics. 2021-1-7

[2]
Deep learning applications for the accurate identification of low-transcriptional activity drugs and their mechanism of actions.

Pharmacol Res. 2022-6

[3]
Predicting mechanism of action of novel compounds using compound structure and transcriptomic signature coembedding.

Bioinformatics. 2021-7-12

[4]
Integrating Drug's Mode of Action into Quantitative Structure-Activity Relationships for Improved Prediction of Drug-Induced Liver Injury.

J Chem Inf Model. 2017-4-24

[5]
BubbleGUM: automatic extraction of phenotype molecular signatures and comprehensive visualization of multiple Gene Set Enrichment Analyses.

BMC Genomics. 2015-10-19

[6]
MOASL: Predicting drug mechanism of actions through similarity learning with transcriptomic signature.

Comput Biol Med. 2024-2

[7]
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.

Artif Intell Med. 2019-7-26

[8]
A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation.

Front Pharmacol. 2018-10-2

[9]
Open MoA: revealing the mechanism of action (MoA) based on network topology and hierarchy.

Bioinformatics. 2023-11-1

[10]
Machine Learning Uses Chemo-Transcriptomic Profiles to Stratify Antimalarial Compounds With Similar Mode of Action.

Front Cell Infect Microbiol. 2021

引用本文的文献

[1]
Advances and challenges in drug repurposing in precision therapeutics of colorectal cancer.

World J Gastrointest Oncol. 2025-7-15

[2]
Drug mechanism enrichment analysis improves prioritization of therapeutics for repurposing.

BMC Bioinformatics. 2023-5-24

[3]
Compound Danshen Dripping Pill inhibits hypercholesterolemia/atherosclerosis-induced heart failure in ApoE and LDLR dual deficient mice multiple mechanisms.

Acta Pharm Sin B. 2023-3

[4]
Artificial Intelligence-Assisted Transcriptomic Analysis to Advance Cancer Immunotherapy.

J Clin Med. 2023-2-6

[5]
Computational analyses of mechanism of action (MoA): data, methods and integration.

RSC Chem Biol. 2021-12-22

[6]
Accelerating drug repurposing for COVID-19 treatment by modeling mechanisms of action using cell image features and machine learning.

Cogn Neurodyn. 2023-6

本文引用的文献

[1]
Drug mechanism-of-action discovery through the integration of pharmacological and CRISPR screens.

Mol Syst Biol. 2020-7

[2]
A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19.

N Engl J Med. 2020-6-3

[3]
Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.

Cell Res. 2020-3

[4]
Signatures of cell death and proliferation in perturbation transcriptomics data-from confounding factor to effective prediction.

Nucleic Acids Res. 2019-11-4

[5]
Drug repurposing: progress, challenges and recommendations.

Nat Rev Drug Discov. 2018-10-12

[6]
Deep learning-based transcriptome data classification for drug-target interaction prediction.

BMC Genomics. 2018-9-24

[7]
Drug Repurposing Using Deep Embeddings of Gene Expression Profiles.

Mol Pharm. 2018-8-7

[8]
L1000FWD: fireworks visualization of drug-induced transcriptomic signatures.

Bioinformatics. 2018-6-15

[9]
gene2drug: a computational tool for pathway-based rational drug repositioning.

Bioinformatics. 2018-5-1

[10]
A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.

Cell. 2017-11-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索