Suppr超能文献

使用完全平衡模型的响应面方法:对一个数据集中的重新分析。 (原文中“in the.”后面似乎内容不完整)

Response Surface Methodology Using a Fullest Balanced Model: A Re-Analysis of a Dataset in the .

作者信息

Rheem Sungsue, Rheem Insoo, Oh Sejong

机构信息

Department of Applied Statistics, Korea University, Sejong 30019, Korea.

Department of Laboratory Medicine, Dankook University Hospital, Cheonan 31116, Korea.

出版信息

Korean J Food Sci Anim Resour. 2017;37(1):139-146. doi: 10.5851/kosfa.2017.37.1.139. Epub 2017 Feb 28.

Abstract

Response surface methodology (RSM) is a useful set of statistical techniques for modeling and optimizing responses in research studies of food science. In the analysis of response surface data, a second-order polynomial regression model is usually used. However, sometimes we encounter situations where the fit of the second-order model is poor. If the model fitted to the data has a poor fit including a lack of fit, the modeling and optimization results might not be accurate. In such a case, using a fullest balanced model, which has no lack of fit, can fix such problem, enhancing the accuracy of the response surface modeling and optimization. This article presents how to develop and use such a model for the better modeling and optimizing of the response through an illustrative re-analysis of a dataset in Park (2014) published in the .

摘要

响应面法(RSM)是食品科学研究中用于对响应进行建模和优化的一组有用的统计技术。在响应面数据分析中,通常使用二阶多项式回归模型。然而,有时我们会遇到二阶模型拟合效果不佳的情况。如果拟合到数据的模型拟合效果差,包括缺乏拟合,那么建模和优化结果可能不准确。在这种情况下,使用没有缺乏拟合的完全平衡模型可以解决此类问题,提高响应面建模和优化的准确性。本文通过对发表在《》上的Park(2014)数据集中的数据进行说明性重新分析,介绍了如何开发和使用这样的模型来更好地对响应进行建模和优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba1d/5355578/0b56a95d0df2/kosfa-37-139-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验