a Department of Chemistry , University of Kalyani , Kalyani , 741235 , India.
J Biomol Struct Dyn. 2018 Mar;36(4):878-892. doi: 10.1080/07391102.2017.1301272. Epub 2017 Mar 20.
Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri (SerRS) and histidyl tRNA synthetases from Thermus thermophilus (HisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.
氨酰化反应是蛋白质生物合成的第一步。氨酰-tRNA 合成酶(aaRSs)活性部位的催化重排是由环运动驱动的。aaRSs 中催化环动力学的理解仍然存在空白。我们分别使用分子动力学分析了来自 Methanopyrus kandleri 的丝氨酰-tRNA 合成酶(SerRS)和来自 Thermus thermophilus 的组氨酰-tRNA 合成酶(HisRS)的功能环动力学。结果证实, motif2 环和其他活性部位环是催化结构域中的柔性位点。环中的催化残基与底物形成相互作用网络,形成反应状态。环经历关闭状态和打开状态之间的转变,组成残基的弛豫发生在飞秒到纳秒时间尺度内。与环内的 Gly 残基相比,与底物形成特定相互作用网络以形成反应状态的组成催化残基的序参数更高。从突变研究中得到了相互作用的发展支持,其中具有突变环的催化结构域与底物表现出不利的结合能。在环的开-闭运动过程中,催化残基通过超快的摆动运动以及快速的扩散运动进行弛豫,随后通过较慢的扩散运动缓慢弛豫。Gly 残基作为铰链通过其更快的弛豫行为促进环的关闭和打开。通过比较隐式溶剂和显式溶剂模拟来分析结合水的作用。在没有水的情况下,环无法形成催化活性的几何形状。本研究首次揭示了 aaRS 中活性部位环动力学的性质及其对催化的影响。