Suppr超能文献

内皮型一氧化氮合酶依赖性的β-连环蛋白S-亚硝基化可阻止其与TCF4结合,并抑制Wnt3a刺激的内皮细胞增殖。

Endothelial NO Synthase-Dependent S-Nitrosylation of β-Catenin Prevents Its Association with TCF4 and Inhibits Proliferation of Endothelial Cells Stimulated by Wnt3a.

作者信息

Zhang Ying, Chidiac Rony, Delisle Chantal, Gratton Jean-Philippe

机构信息

Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.

Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.

出版信息

Mol Cell Biol. 2017 May 31;37(12). doi: 10.1128/MCB.00089-17. Print 2017 Jun 15.

Abstract

Nitric oxide (NO) produced by endothelial NO synthase (eNOS) modulates many functions in endothelial cells. S-nitrosylation (SNO) of cysteine residues on β-catenin by eNOS-derived NO has been shown to influence intercellular contacts between endothelial cells. However, the implication of SNO in the regulation of β-catenin transcriptional activity is ill defined. Here, we report that NO inhibits the transcriptional activity of β-catenin and endothelial cell proliferation induced by activation of Wnt/β-catenin signaling. Interestingly, induction by Wnt3a of β-catenin target genes, such as the axin2 gene, is repressed in an eNOS-dependent manner by vascular endothelial growth factor (VEGF). We identified Cys466 of β-catenin as a target for SNO by eNOS-derived NO and as the critical residue for the repressive effects of NO on β-catenin transcriptional activity. Furthermore, we observed that Cys466 of β-catenin, located at the binding interface of the β-catenin-TCF4 transcriptional complex, is essential for disruption of this complex by NO. Importantly, Cys466 of β-catenin is necessary for the inhibitory effects of NO on Wnt3a-stimulated proliferation of endothelial cells. Thus, our data define the mechanism responsible for the repressive effects of NO on the transcriptional activity of β-catenin and link eNOS-derived NO to the modulation by VEGF of Wnt/β-catenin-induced endothelial cell proliferation.

摘要

内皮型一氧化氮合酶(eNOS)产生的一氧化氮(NO)可调节内皮细胞的多种功能。eNOS衍生的NO对β-连环蛋白上半胱氨酸残基的S-亚硝基化(SNO)已被证明会影响内皮细胞之间的细胞间接触。然而,SNO在β-连环蛋白转录活性调节中的作用尚不明确。在此,我们报告NO抑制Wnt/β-连环蛋白信号激活诱导的β-连环蛋白转录活性和内皮细胞增殖。有趣的是,血管内皮生长因子(VEGF)以eNOS依赖的方式抑制Wnt3a对β-连环蛋白靶基因(如axin2基因)的诱导。我们确定β-连环蛋白的Cys466是eNOS衍生的NO进行SNO的靶点,也是NO对β-连环蛋白转录活性产生抑制作用的关键残基。此外,我们观察到位于β-连环蛋白-TCF4转录复合物结合界面的β-连环蛋白Cys466对于NO破坏该复合物至关重要。重要的是,β-连环蛋白的Cys466对于NO抑制Wnt3a刺激的内皮细胞增殖的作用是必需的。因此,我们的数据确定了NO对β-连环蛋白转录活性产生抑制作用的机制,并将eNOS衍生的NO与VEGF对Wnt/β-连环蛋白诱导的内皮细胞增殖的调节联系起来。

相似文献

2
S-nitrosylation of beta-catenin by eNOS-derived NO promotes VEGF-induced endothelial cell permeability.
Mol Cell. 2010 Aug 13;39(3):468-76. doi: 10.1016/j.molcel.2010.07.013.
3
S-Nitrosation of β-catenin and p120 catenin: a novel regulatory mechanism in endothelial hyperpermeability.
Circ Res. 2012 Aug 17;111(5):553-63. doi: 10.1161/CIRCRESAHA.112.274548. Epub 2012 Jul 9.
5
Canonical Wnt signaling induces vascular endothelial dysfunction via p66Shc-regulated reactive oxygen species.
Arterioscler Thromb Vasc Biol. 2014 Oct;34(10):2301-9. doi: 10.1161/ATVBAHA.114.304338. Epub 2014 Aug 21.
6
Endothelial Nitric Oxide Synthase-Derived Nitric Oxide Prevents Dihydrofolate Reductase Degradation via Promoting S-Nitrosylation.
Arterioscler Thromb Vasc Biol. 2015 Nov;35(11):2366-73. doi: 10.1161/ATVBAHA.115.305796. Epub 2015 Sep 17.
8
Sphingosine-1-phosphate receptor 2 protects against anaphylactic shock through suppression of endothelial nitric oxide synthase in mice.
J Allergy Clin Immunol. 2013 Nov;132(5):1205-1214.e9. doi: 10.1016/j.jaci.2013.07.026. Epub 2013 Sep 8.
10
eNOS S-nitrosylation mediated OxLDL-induced endothelial dysfunction via increasing the interaction of eNOS with β‑catenin.
Biochim Biophys Acta Mol Basis Dis. 2019 Jul 1;1865(7):1793-1801. doi: 10.1016/j.bbadis.2018.02.009. Epub 2018 Feb 20.

引用本文的文献

1
S-Nitrosylation: Mechanistic Links between Nitric Oxide Signaling and Atherosclerosis.
Curr Atheroscler Rep. 2025 Aug 7;27(1):78. doi: 10.1007/s11883-025-01321-y.
2
The Ever-Expanding Influence of the Endothelial Nitric Oxide Synthase.
Basic Clin Pharmacol Toxicol. 2025 May;136(5):e70029. doi: 10.1111/bcpt.70029.
3
TClC effectively suppresses the growth and metastasis of NSCLC via polypharmacology.
Bioact Mater. 2024 Dec 13;45:567-583. doi: 10.1016/j.bioactmat.2024.11.019. eCollection 2025 Mar.
4
Moonlighting at the Poles: Non-Canonical Functions of Centrosomes.
Front Cell Dev Biol. 2022 Jul 14;10:930355. doi: 10.3389/fcell.2022.930355. eCollection 2022.
6
Longitudinal shear stress response in human endothelial cells to atheroprone and atheroprotective conditions.
Proc Natl Acad Sci U S A. 2021 Jan 26;118(4). doi: 10.1073/pnas.2023236118.
7
Low-Level Nanog Expression in the Regulation of Quiescent Endothelium.
Arterioscler Thromb Vasc Biol. 2020 Sep;40(9):2244-2264. doi: 10.1161/ATVBAHA.120.314875. Epub 2020 Jul 9.
9
Dopamine D receptor modulates Wnt expression and control of cell proliferation.
Sci Rep. 2019 Nov 14;9(1):16861. doi: 10.1038/s41598-019-52528-4.

本文引用的文献

1
WNT10B enhances proliferation through β-catenin and RAC1 GTPase in human corneal endothelial cells.
J Biol Chem. 2015 Oct 30;290(44):26752-64. doi: 10.1074/jbc.M115.677245. Epub 2015 Sep 14.
2
Bidirectional cross-regulation between the endothelial nitric oxide synthase and β-catenin signalling pathways.
Cardiovasc Res. 2014 Oct 1;104(1):116-26. doi: 10.1093/cvr/cvu173. Epub 2014 Jul 25.
3
Protein microarray characterization of the S-nitrosoproteome.
Mol Cell Proteomics. 2014 Jan;13(1):63-72. doi: 10.1074/mcp.M113.032235. Epub 2013 Oct 8.
4
Wnt signaling in the vasculature.
Exp Cell Res. 2013 May 15;319(9):1317-23. doi: 10.1016/j.yexcr.2012.12.023. Epub 2013 Jan 3.
5
NO-β-catenin crosstalk modulates primitive streak formation prior to embryonic stem cell osteogenic differentiation.
J Cell Sci. 2012 Nov 15;125(Pt 22):5564-77. doi: 10.1242/jcs.081703. Epub 2012 Sep 3.
6
Wnt/β-catenin signaling and disease.
Cell. 2012 Jun 8;149(6):1192-205. doi: 10.1016/j.cell.2012.05.012.
8
Molecular control of endothelial cell behaviour during blood vessel morphogenesis.
Nat Rev Mol Cell Biol. 2011 Aug 23;12(9):551-64. doi: 10.1038/nrm3176.
9
Protein nitration and nitrosylation by NO-donating aspirin in colon cancer cells: Relevance to its mechanism of action.
Exp Cell Res. 2011 Jun 10;317(10):1359-67. doi: 10.1016/j.yexcr.2011.03.001. Epub 2011 Mar 22.
10
The ubiquitin-specific protease USP34 regulates axin stability and Wnt/β-catenin signaling.
Mol Cell Biol. 2011 May;31(10):2053-65. doi: 10.1128/MCB.01094-10. Epub 2011 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验