Tamada Hiromi, Kiryu-Seo Sumiko, Hosokawa Hiroki, Ohta Keisuke, Ishihara Naotada, Nomura Masatoshi, Mihara Katsuyoshi, Nakamura Kei-Ichiro, Kiyama Hiroshi
Department of Functional Anatomy & Neuroscience, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
Japan Society for the Promotion of Science, Tokyo, 102-8472, Japan.
J Comp Neurol. 2017 Aug 1;525(11):2535-2548. doi: 10.1002/cne.24213. Epub 2017 Apr 21.
Mitochondria undergo morphological changes through fusion and fission for their quality control, which are vital for neuronal function. In this study, we examined three-dimensional morphologies of mitochondria in motor neurons under normal, nerve injured, and nerve injured plus fission-impaired conditions using the focused ion beam/scanning electron microscopy (FIB/SEM), because the FIB/SEM technology is a powerful tool to demonstrate both 3D images of whole organelle and the intra-organellar structure simultaneously. Crossing of dynamin-related protein 1 (Drp1) gene-floxed mice with neuronal injury-specific Cre driver mice, Atf3:BAC Tg mice, allowed for Drp1 ablation specifically in injured neurons. FIB/SEM analysis demonstrated that somatic mitochondrial morphologies in motor neurons were not altered before or after nerve injury. However, the fission impairment resulted in prominent somatic mitochondrial enlargement, which initially induced complex morphologies with round regions and long tubular processes, subsequently causing a decrease in the number of processes and further enlargement of the round regions, which eventually resulted in big spheroidal mitochondria without processes. The abnormal mitochondria exhibited several degradative morphologies: local or total cristae collapse, vacuolization, and mitophagy. These suggest that mitochondrial fission is crucial for maintaining mitochondrial integrity in injured motor neurons, and multiple forms of mitochondria degradation may accelerate neuronal degradation.
线粒体通过融合和裂变进行形态变化以实现其质量控制,这对神经元功能至关重要。在本研究中,我们使用聚焦离子束/扫描电子显微镜(FIB/SEM)检查了正常、神经损伤以及神经损伤加裂变受损条件下运动神经元中线粒体的三维形态,因为FIB/SEM技术是一种能够同时展示整个细胞器的三维图像和细胞器内结构的强大工具。将动力相关蛋白1(Drp1)基因敲除小鼠与神经元损伤特异性Cre驱动小鼠Atf3:BAC Tg小鼠杂交,可使Drp1在受损神经元中特异性缺失。FIB/SEM分析表明,神经损伤前后运动神经元胞体中线粒体的形态没有改变。然而,裂变受损导致胞体线粒体显著增大,最初形成具有圆形区域和长管状突起的复杂形态,随后导致突起数量减少,圆形区域进一步增大,最终形成无突起的大球形线粒体。异常线粒体呈现出几种降解形态:局部或全部嵴塌陷、空泡化和线粒体自噬。这些结果表明,线粒体裂变对于维持受损运动神经元中线粒体的完整性至关重要,多种形式的线粒体降解可能加速神经元的降解。