Thibault Guillaume, Azimi Vahid, Johnson Brett, Jorgens Danielle, Link Jason, Margolin Adam, Gray Joe W
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1175-1178. doi: 10.1109/EMBC.2016.7590914.
The cellular heterogeneity and complex tissue architecture of most tumor samples is a major obstacle in image analysis on standard hematoxylin and eosin-stained (H&E) tissue sections. A mixture of cancer and normal cells complicates the interpretation of their cytological profiles. Furthermore, spatial arrangement and architectural organization of cells are generally not reflected in cellular characteristics analysis. To address these challenges, first we describe an automatic nuclei segmentation of H&E tissue sections. In the task of deconvoluting cellular heterogeneity, we adopt Landmark based Spectral Clustering (LSC) to group individual nuclei in such a way that nuclei in the same group are more similar. We next devise spatial statistics for analyzing spatial arrangement and organization, which are not detectable by individual cellular characteristics. Our quantitative, spatial statistics analysis could benefit H&E section analysis by refining and complementing cellular characteristics analysis.
大多数肿瘤样本的细胞异质性和复杂的组织结构是标准苏木精和伊红染色(H&E)组织切片图像分析的主要障碍。癌细胞和正常细胞的混合使得对其细胞学特征的解读变得复杂。此外,细胞的空间排列和结构组织在细胞特征分析中通常没有得到体现。为应对这些挑战,首先我们描述了一种对H&E组织切片进行细胞核自动分割的方法。在解卷积细胞异质性的任务中,我们采用基于地标点的谱聚类(LSC)来对单个细胞核进行分组,使得同一组内的细胞核更加相似。接下来,我们设计了用于分析空间排列和组织的空间统计方法,这些是个体细胞特征无法检测到的。我们的定量空间统计分析可以通过完善和补充细胞特征分析,为H&E切片分析提供帮助。