Suppr超能文献

乳腺癌组织病理学图像的细胞核分割。

Nuclei Segmentation on Histopathology Images of Breast Carcinoma.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2622-2628. doi: 10.1109/EMBC46164.2021.9630846.

Abstract

With the use of computer-aided diagnostic systems, the automatic detection and segmentation of the cell nuclei have become essential in pathology due to cellular nuclei counting and nuclear pleomorphism analysis are critical for the classification and grading of breast cancer histopathology. This work describes a methodology for automatic detection and segmentation of cellular nuclei in breast cancer histopathology images obtained from the BreakHis database, the Standford tissue microarray database, and the Breast Cancer Cell Segmentation database. The proposed scheme is based on the characterization of Hematoxylin and Eosin (H&E) staining, size, and shape features. In addition, we use the information obtained from morphological transformations and adaptive intensity adjustments to detect and separate each cell nucleus detected in the image. The segmentation was carried out by testing the proposed methodology in a histological breast cancer database that provides the associated groundtruth segmentation. Subsequently, the Sørensen-Dice similarity coefficient was calculated to analyze the suitability of the results.Clinical relevance- In this work, the detection and segmentation of cell nuclei in breast cancer histological images are carried out automatically. The method can identify cell nuclei regardless of variations in the level of staining and image magnification. Moreover, a granulometric analysis of the components allows identifying cell clumps and segment them into individual cell nuclei. Improved identification of cell nuclei under different image conditions was demonstrated to reach a sensitivity average of 0.76 ± 0.12. The results provide a base for further and complex processes such as cell counting, feature analysis, and nuclear pleomorphism, which are relevant tasks in the evaluation and diagnostic performed by the expert pathologist.

摘要

使用计算机辅助诊断系统,自动检测和分割细胞核已成为病理学中的必要步骤,因为细胞核计数和核异形性分析对于乳腺癌组织病理学的分类和分级至关重要。本工作描述了一种从 BreakHis 数据库、斯坦福组织微阵列数据库和乳腺癌细胞分割数据库中获取的乳腺癌组织病理学图像中自动检测和分割细胞核的方法。所提出的方案基于对苏木精和伊红(H&E)染色、大小和形状特征的描述。此外,我们还利用形态变换和自适应强度调整所获得的信息来检测和分离图像中检测到的每个细胞核。通过在提供相关地面分割的组织学乳腺癌数据库中测试所提出的方法来进行分割。随后,计算了 Sørensen-Dice 相似系数以分析结果的适用性。临床相关性- 在这项工作中,自动执行乳腺癌组织学图像中的细胞核检测和分割。该方法可以识别细胞核,而不受染色水平和图像放大倍数变化的影响。此外,对成分进行粒度分析可以识别细胞簇并将其分割成单个细胞核。在不同图像条件下对细胞核的识别能力得到了提高,平均灵敏度达到 0.76 ± 0.12。这些结果为进一步的复杂过程提供了基础,例如细胞计数、特征分析和核异形性,这些都是专家病理学家进行评估和诊断的相关任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验