Suppr超能文献

室温下利用瞬态圆二色吸收光谱研究本征砷化镓量子阱中空穴的自旋弛豫动力学。

Spin relaxation dynamics of holes in intrinsic GaAs quantum wells studied by transient circular dichromatic absorption spectroscopy at room temperature.

作者信息

Fang Shaoyin, Zhu Ruidan, Lai Tianshu

机构信息

State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou, 510275, P.R. China.

出版信息

Sci Rep. 2017 Mar 21;7(1):287. doi: 10.1038/s41598-017-00396-1.

Abstract

Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.

摘要

利用时间分辨圆二色吸收光谱在室温下研究了本征GaAs量子阱中空穴的自旋弛豫动力学。研究发现,超快动力学主要由能带填充和多体效应的协同贡献主导。这两种效应的相对贡献在电子和空穴的强度上是相反的。因此,具有同向和交叉圆偏振泵浦和探测的瞬态圆二色性微分透射(TCD-DT)在几个皮秒延迟时间呈现出不同的强度。激发空穴的超快自旋弛豫动力学在具有交叉圆偏振泵浦和探测的TCD-DT中得到了灵敏的反映。建立了一个包括相干伪像、非热载流子热化以及能带填充和多体效应的协同贡献的模型,并用于拟合具有交叉圆偏振泵浦和探测的TCD-DT。首次在室温下获得了空穴自旋弛豫时间作为激发空穴密度的函数,并且随着空穴密度的增加而增加,这与基于EY自旋弛豫机制的理论预测不一致,这意味着EY机制在室温下可能不是主导的空穴自旋弛豫机制,而DP机制可能是主导的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23fb/5428295/2fa368222ae3/41598_2017_396_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验