Suppr超能文献

了解你在预测编码中的作用:对正向建模的元监测。

Know thy agency in predictive coding: Meta-monitoring over forward modeling.

作者信息

Asai Tomohisa

机构信息

NTT Communication Science Laboratories, Human Information Science Laboratory, Kanagawa, Japan.

出版信息

Conscious Cogn. 2017 May;51:82-99. doi: 10.1016/j.concog.2017.03.001. Epub 2017 Apr 10.

Abstract

Though the computation of agency is thought to be based on prediction error, it is important for us to grasp our own reliability of that detected error. Here, the current study shows that we have a meta-monitoring ability over our own forward model, where the accuracy of motor prediction and therefore of the felt agency are implicitly evaluated. Healthy participants (N=105) conducted a simple motor control task and SELF or OTHER visual feedback was given. The relationship between the accuracy and confidence in a mismatch detection task and in a self-other attribution task was examined. The results suggest an accuracy-confidence correlation in both tasks, indicating our meta-monitoring ability over such decisions. Furthermore, a statistically identified group with low accuracy and low confidence was characterized as higher schizotypal people. Finally, what we can know about our own forward model and how we can know it is discussed.

摘要

尽管人们认为能动性的计算是基于预测误差,但对我们来说,掌握所检测到的误差的自身可靠性很重要。在此,当前的研究表明,我们对自己的前向模型具有元监测能力,其中运动预测的准确性以及由此产生的感觉能动性会被隐性评估。健康参与者(N = 105)进行了一项简单的运动控制任务,并给予自我或他人视觉反馈。研究了失配检测任务和自我-他人归因任务中准确性与信心之间的关系。结果表明两项任务中都存在准确性-信心相关性,这表明我们对这类决策具有元监测能力。此外,一个在统计学上被确定为准确性低且信心低的群体被特征化为具有较高分裂型人格特质的人。最后,讨论了我们对自己的前向模型能够了解什么以及我们如何了解它。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验