Shaw Calvin B, Hui Edward S, Helpern Joseph A, Jensen Jens H
Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA.
Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina, USA.
NMR Biomed. 2017 Jul;30(7). doi: 10.1002/nbm.3722. Epub 2017 Mar 22.
Double-pulsed diffusional kurtosis imaging (DP-DKI) represents the double diffusion encoding (DDE) MRI signal in terms of six-dimensional (6D) diffusion and kurtosis tensors. Here a method for estimating these tensors from experimental data is described. A standard numerical algorithm for tensor estimation from conventional (i.e. single diffusion encoding) diffusional kurtosis imaging (DKI) data is generalized to DP-DKI. This algorithm is based on a weighted least squares (WLS) fit of the signal model to the data combined with constraints designed to minimize unphysical parameter estimates. The numerical algorithm then takes the form of a quadratic programming problem. The principal change required to adapt the conventional DKI fitting algorithm to DP-DKI is replacing the three-dimensional diffusion and kurtosis tensors with the 6D tensors needed for DP-DKI. In this way, the 6D diffusion and kurtosis tensors for DP-DKI can be conveniently estimated from DDE data by using constrained WLS, providing a practical means for condensing DDE measurements into well-defined mathematical constructs that may be useful for interpreting and applying DDE MRI. Data from healthy volunteers for brain are used to demonstrate the DP-DKI tensor estimation algorithm. In particular, representative parametric maps of selected tensor-derived rotational invariants are presented.
双脉冲扩散峰度成像(DP-DKI)根据六维(6D)扩散张量和峰度张量来表示双扩散编码(DDE)MRI信号。本文描述了一种从实验数据估计这些张量的方法。一种用于从传统(即单扩散编码)扩散峰度成像(DKI)数据估计张量的标准数值算法被推广到DP-DKI。该算法基于信号模型对数据的加权最小二乘(WLS)拟合,并结合旨在最小化非物理参数估计的约束条件。数值算法随后采用二次规划问题的形式。将传统DKI拟合算法应用于DP-DKI所需的主要变化是将三维扩散张量和峰度张量替换为DP-DKI所需的6D张量。通过这种方式,可以使用约束WLS从DDE数据方便地估计DP-DKI的6D扩散张量和峰度张量,为将DDE测量结果浓缩为明确的数学结构提供了一种实用方法,这可能有助于解释和应用DDE MRI。来自健康志愿者大脑的数据用于演示DP-DKI张量估计算法。特别是,展示了所选张量衍生旋转不变量的代表性参数图。