Institute for Systems and Robotics-Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
MAGMA. 2024 Oct;37(5):859-872. doi: 10.1007/s10334-024-01153-y. Epub 2024 Feb 23.
Diffusional kurtosis imaging (DKI) extends diffusion tensor imaging (DTI), characterizing non-Gaussian diffusion effects but requires longer acquisition times. To ensure the robustness of DKI parameters, data acquisition ordering should be optimized allowing for scan interruptions or shortening. Three methodologies were used to examine how reduced diffusion MRI scans impact DKI histogram-metrics: 1) the electrostatic repulsion model (Opt); 2) spherical codes (Opt); 3) random (Random).
Pre-acquired diffusion multi-shell data from 14 female healthy volunteers (29±5 years) were used to generate reordered data. For each strategy, subsets containing different amounts of the full dataset were generated. The subsampling effects were assessed on histogram-based DKI metrics from tract-based spatial statistics (TBSS) skeletonized maps. To evaluate each subsampling method on simulated data at different SNRs and the influence of subsampling on in vivo data, we used a 3-way and 2-way repeated measures ANOVA, respectively.
Simulations showed that subsampling had different effects depending on DKI parameter, with fractional anisotropy the most stable (up to 5% error) and radial kurtosis the least stable (up to 26% error). Random performed the worst while the others showed comparable results. Furthermore, the impact of subsampling varied across distinct histogram characteristics, the peak value the least affected (Opt: up to 5% error; Opt: up to 7% error) and peak height (Opt: up to 8% error; Opt: up to 11% error) the most affected.
The impact of truncation depends on specific histogram-based DKI metrics. The use of a strategy for optimizing the acquisition order is advisable to improve DKI robustness to exam interruptions.
扩散峰度成像(DKI)扩展了扩散张量成像(DTI),可用于描述非高斯扩散效应,但需要更长的采集时间。为了确保 DKI 参数的稳健性,应优化数据采集顺序,以便在扫描中断或缩短时进行优化。本研究使用三种方法来检查减少扩散 MRI 扫描对 DKI 直方图指标的影响:1)静电排斥模型(Opt);2)球形编码(Opt);3)随机(Random)。
使用来自 14 名健康女性志愿者(29±5 岁)的预先采集的扩散多壳数据来生成重新排序的数据。对于每种策略,生成包含不同数量全数据集的子集。基于基于束的空间统计学(TBSS)骨架图的直方图 DKI 指标评估了抽样效应。为了评估每种抽样方法在不同 SNR 下的模拟数据以及抽样对体内数据的影响,我们分别使用了 3 种和 2 种重复测量方差分析。
模拟结果表明,抽样具有不同的效果,这取决于 DKI 参数,其中各向异性分数是最稳定的(误差高达 5%),而径向峰度是最不稳定的(误差高达 26%)。随机抽样效果最差,而其他方法则效果相当。此外,抽样的影响因不同的直方图特征而异,峰值受影响最小(Opt:误差高达 5%;Opt:误差高达 7%),峰值高度受影响最大(Opt:误差高达 8%;Opt:误差高达 11%)。
截断的影响取决于特定的基于直方图的 DKI 指标。建议使用优化采集顺序的策略来提高 DKI 对检查中断的稳健性。