Suppr超能文献

前列腺特异性抗原与腺泡密度:一个新维度——“前列腺比容”

Prostate specific antigen and acinar density: a new dimension, the "Prostatocrit".

作者信息

Robinson Simon, Laniado Marc, Montgomery Bruce

机构信息

Frimley Park Foundation Trust, United Kingdom.

出版信息

Int Braz J Urol. 2017 Mar-Apr;43(2):230-238. doi: 10.1590/S1677-5538.IBJU.2016.0145.

Abstract

BACKGROUND

Prostate-specific antigen densities have limited success in diagnosing prostate cancer. We emphasise the importance of the peripheral zone when considered with its cellular constituents, the "prostatocrit".

OBJECTIVE

Using zonal volumes and asymmetry of glandular acini, we generate a peripheral zone acinar volume and density. With the ratio to the whole gland, we can better predict high grade and all grade cancer. We can model the gland into its acinar and stromal elements. This new "prostatocrit" model could offer more accurate nomograms for biopsy.

MATERIALS AND METHODS

674 patients underwent TRUS and biopsy. Whole gland and zonal volumes were recorded. We compared ratio and acinar volumes when added to a "clinic" model using traditional PSA density. Univariate logistic regression was used to find significant predictors for all and high grade cancer. Backwards multiple logistic regression was used to generate ROC curves comparing the new model to conventional density and PSA alone.

OUTCOME AND RESULTS

Prediction of all grades of prostate cancer: significant variables revealed four significant "prostatocrit" parameters: log peripheral zone acinar density; peripheral zone acinar volume/whole gland acinar volume; peripheral zone acinar density/whole gland volume; peripheral zone acinar density. Acinar model (AUC 0.774), clinic model (AUC 0.745) (P=0.0105). Prediction of high grade prostate cancer: peripheral zone acinar density ("prostatocrit") was the only significant density predictor. Acinar model (AUC 0.811), clinic model (AUC 0.769) (P=0.0005).

CONCLUSION

There is renewed use for ratio and "prostatocrit" density of the peripheral zone in predicting cancer. This outperforms all traditional density measurements.

摘要

背景

前列腺特异性抗原密度在前列腺癌诊断中的成功率有限。我们强调在考虑外周区及其细胞成分“前列腺细胞比容”时其重要性。

目的

利用腺泡带体积和腺泡不对称性,生成外周区腺泡体积和密度。通过与整个腺体的比值,我们可以更好地预测高级别和所有级别的癌症。我们可以将腺体建模为腺泡和基质成分。这种新的“前列腺细胞比容”模型可为活检提供更准确的列线图。

材料与方法

674例患者接受了经直肠超声检查(TRUS)和活检。记录整个腺体和各带体积。我们将比值和腺泡体积添加到使用传统PSA密度的“临床”模型中进行比较。采用单因素逻辑回归分析确定所有级别和高级别癌症的显著预测因素。采用向后多因素逻辑回归分析生成ROC曲线,比较新模型与传统密度及单独PSA的差异。

结果

所有级别的前列腺癌预测:显著变量显示四个显著的“前列腺细胞比容”参数:外周区腺泡密度对数;外周区腺泡体积/整个腺体腺泡体积;外周区腺泡密度/整个腺体体积;外周区腺泡密度。腺泡模型(AUC 0.774),临床模型(AUC 0.745)(P = 0.0105)。高级别前列腺癌预测:外周区腺泡密度(“前列腺细胞比容”)是唯一显著的密度预测因素。腺泡模型(AUC 0.811),临床模型(AUC 0.769)(P = 0.0005)。

结论

外周区的比值和“前列腺细胞比容”密度在预测癌症方面有新的应用。这优于所有传统的密度测量方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd3/5433361/f4cf7bba850d/1677-5538-ibju-43-02-0230-gf01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验