Suppr超能文献

配体诱导的胰岛素调节氨肽酶构象变化:对催化机制和活性位点可塑性的见解

Ligand-Induced Conformational Change of Insulin-Regulated Aminopeptidase: Insights on Catalytic Mechanism and Active Site Plasticity.

作者信息

Mpakali Anastasia, Saridakis Emmanuel, Harlos Karl, Zhao Yuguang, Kokkala Paraskevi, Georgiadis Dimitris, Giastas Petros, Papakyriakou Athanasios, Stratikos Efstratios

机构信息

National Center for Scientific Research Demokritos, Agia Paraskevi , Athens 15310, Greece.

Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford University , Oxford OX3 7BN, United Kingdom.

出版信息

J Med Chem. 2017 Apr 13;60(7):2963-2972. doi: 10.1021/acs.jmedchem.6b01890. Epub 2017 Apr 3.

Abstract

Insulin-regulated aminopeptidase (IRAP) is an enzyme with several important biological functions that is known to process a large variety of different peptidic substrates, although the mechanism behind this wide specificity is not clearly understood. We describe a crystal structure of IRAP in complex with a recently developed bioactive and selective inhibitor at 2.53 Å resolution. In the presence of this inhibitor, the enzyme adopts a novel conformation in which domains II and IV are juxtaposed, forming a hollow structure that excludes external solvent access to the catalytic center. A loop adjacent to the enzyme's GAMEN motif undergoes structural reconfiguration, allowing the accommodation of bulky inhibitor side chains. Atomic interactions between the inhibitor and IRAP that are unique to this conformation can explain the strong selectivity compared to homologous aminopeptidases ERAP1 and ERAP2. This conformation provides insight on IRAP's catalytic cycle and reveals significant active-site plasticity that may underlie its substrate permissiveness.

摘要

胰岛素调节氨肽酶(IRAP)是一种具有多种重要生物学功能的酶,已知它能处理多种不同的肽类底物,尽管这种广泛特异性背后的机制尚不清楚。我们描述了IRAP与一种最近开发的生物活性和选择性抑制剂复合物的晶体结构,分辨率为2.53Å。在这种抑制剂存在的情况下,该酶呈现出一种新的构象,其中结构域II和IV并列,形成一个中空结构,排除了外部溶剂进入催化中心的通道。与酶的GAMEN基序相邻的一个环发生结构重排,以容纳庞大的抑制剂侧链。这种构象特有的抑制剂与IRAP之间的原子相互作用可以解释与同源氨肽酶ERAP1和ERAP2相比的强选择性。这种构象为IRAP的催化循环提供了见解,并揭示了可能是其底物宽容性基础的显著活性位点可塑性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验