Suppr超能文献

用于评估 COPD 患者住院再入院情况的自然语言处理框架。

A Natural Language Processing Framework for Assessing Hospital Readmissions for Patients With COPD.

出版信息

IEEE J Biomed Health Inform. 2018 Mar;22(2):588-596. doi: 10.1109/JBHI.2017.2684121. Epub 2017 Mar 17.

Abstract

With the passage of recent federal legislation, many medical institutions are now responsible for reaching target hospital readmission rates. Chronic diseases account for many hospital readmissions and chronic obstructive pulmonary disease has been recently added to the list of diseases for which the United States government penalizes hospitals incurring excessive readmissions. Though there have been efforts to statistically predict those most in danger of readmission, a few have focused primarily on unstructured clinical notes. We have proposed a framework, which uses natural language processing to analyze clinical notes and predict readmission. Many algorithms within the field of data mining and machine learning exist, so a framework for component selection is created to select the best components. Naïve Bayes using Chi-Squared feature selection offers an AUC of 0.690 while maintaining fast computational times.

摘要

随着最近联邦立法的通过,许多医疗机构现在负责达到目标医院再入院率。慢性病是许多医院再入院的原因,慢性阻塞性肺疾病最近也被列入美国政府惩罚过度再入院的疾病之列。尽管已经有努力从统计学上预测那些最有可能再次入院的人,但很少有人主要关注非结构化的临床记录。我们提出了一个使用自然语言处理来分析临床记录并预测再入院的框架。数据挖掘和机器学习领域有许多算法,因此创建了一个组件选择框架来选择最佳组件。朴素贝叶斯使用卡方特征选择提供了 0.690 的 AUC,同时保持快速的计算时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验