Suppr超能文献

针对类矢量夸克模型,与部分子喷注相匹配的 QCD 次领头阶预测。

QCD next-to-leading-order predictions matched to parton showers for vector-like quark models.

作者信息

Fuks Benjamin, Shao Hua-Sheng

机构信息

Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHE, 75005 Paris, France.

CNRS, UMR 7589, LPTHE, 75005 Paris, France.

出版信息

Eur Phys J C Part Fields. 2017;77(2):135. doi: 10.1140/epjc/s10052-017-4686-z. Epub 2017 Feb 27.

Abstract

Vector-like quarks are featured by a wealth of beyond the Standard Model theories and are consequently an important goal of many LHC searches for new physics. Those searches, as well as most related phenomenological studies, however, rely on predictions evaluated at the leading-order accuracy in QCD and consider well-defined simplified benchmark scenarios. Adopting an effective bottom-up approach, we compute next-to-leading-order predictions for vector-like-quark pair production and single production in association with jets, with a weak or with a Higgs boson in a general new physics setup. We additionally compute vector-like-quark contributions to the production of a pair of Standard Model bosons at the same level of accuracy. For all processes under consideration, we focus both on total cross sections and on differential distributions, most these calculations being performed for the first time in our field. As a result, our work paves the way to precise extraction of experimental limits on vector-like quarks thanks to an accurate control of the shapes of the relevant observables and emphasise the extra handles that could be provided by novel vector-like-quark probes never envisaged so far.

摘要

类矢量夸克是众多超出标准模型的理论所关注的对象,因此是大型强子对撞机(LHC)许多新物理搜索的重要目标。然而,这些搜索以及大多数相关的唯象学研究都依赖于在量子色动力学(QCD)中领先阶精度下评估的预测,并考虑定义明确的简化基准情景。我们采用一种有效的自下而上的方法,在一般的新物理设定下,计算类矢量夸克对产生以及与喷注、弱玻色子或希格斯玻色子关联的单产生过程的次领头阶预测。我们还在相同精度水平下计算类矢量夸克对一对标准模型玻色子产生的贡献。对于所有考虑的过程,我们既关注总截面也关注微分分布,其中大多数计算是我们领域首次进行的。因此,我们的工作通过对相关可观测量形状的精确控制,为精确提取类矢量夸克的实验限制铺平了道路,并强调了迄今从未设想过的新型类矢量夸克探针可能提供的额外线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5441/5341210/2f94117758f3/10052_2017_4686_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验