Suppr超能文献

CT肺癌筛查中小肺结节的体积与直径评估

Volume versus diameter assessment of small pulmonary nodules in CT lung cancer screening.

作者信息

Han Daiwei, Heuvelmans Marjolein A, Oudkerk Matthijs

机构信息

University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Groningen, the Netherlands.

出版信息

Transl Lung Cancer Res. 2017 Feb;6(1):52-61. doi: 10.21037/tlcr.2017.01.05.

Abstract

Currently, lung cancer screening by low-dose chest CT is implemented in the United States for high-risk persons. A disadvantage of lung cancer screening is the large number of small-to-intermediate sized lung nodules, detected in around 50% of all participants, the large majority being benign. Accurate estimation of nodule size and growth is essential in the classification of lung nodules. Currently, manual diameter measurements are the standard for lung cancer screening programs and routine clinical care. However, European screening studies using semi-automated volume measurements have shown higher accuracy and reproducibility compared to diameter measurements. In addition to this, with the optimization of CT scan techniques and reconstruction parameters, as well as advances in segmentation software, the accuracy of nodule volume measurement can be improved even further. The positive results of previous studies on volume and diameter measurements of lung nodules suggest that manual measurements of nodule diameter may be replaced by semi-automated volume measurements in the (near) future.

摘要

目前,美国对高危人群实施低剂量胸部CT肺癌筛查。肺癌筛查的一个缺点是,在约50%的所有参与者中会检测到大量小至中等大小的肺结节,其中绝大多数是良性的。准确估计结节大小和生长情况对于肺结节的分类至关重要。目前,手动测量直径是肺癌筛查项目和常规临床护理的标准方法。然而,欧洲使用半自动体积测量的筛查研究表明,与直径测量相比,其具有更高的准确性和可重复性。除此之外,随着CT扫描技术和重建参数的优化,以及分割软件的进步,肺结节体积测量的准确性可以进一步提高。先前关于肺结节体积和直径测量的研究结果表明,在(不久的)将来,手动测量结节直径可能会被半自动体积测量所取代。

相似文献

1
Volume versus diameter assessment of small pulmonary nodules in CT lung cancer screening.
Transl Lung Cancer Res. 2017 Feb;6(1):52-61. doi: 10.21037/tlcr.2017.01.05.
2
Influence of lung nodule margin on volume- and diameter-based reader variability in CT lung cancer screening.
Br J Radiol. 2018 Oct;91(1090):20170405. doi: 10.1259/bjr.20170405. Epub 2017 Nov 8.
7
Three-dimensional analysis of pulmonary nodules by MSCT with Advanced Lung Analysis (ALA1) software.
Radiol Med. 2006 Apr;111(3):343-54. doi: 10.1007/s11547-006-0033-4. Epub 2006 Apr 11.
8
In vivo repeatability of automated volume calculations of small pulmonary nodules with CT.
AJR Am J Roentgenol. 2009 Jun;192(6):1657-61. doi: 10.2214/AJR.08.1825.
9
Disagreement of diameter and volume measurements for pulmonary nodule size estimation in CT lung cancer screening.
Thorax. 2018 Aug;73(8):779-781. doi: 10.1136/thoraxjnl-2017-210770. Epub 2017 Oct 22.
10
Detection and size measurements of pulmonary nodules in ultra-low-dose CT with iterative reconstruction compared to low dose CT.
Eur J Radiol. 2016 Mar;85(3):564-70. doi: 10.1016/j.ejrad.2015.12.013. Epub 2015 Dec 21.

引用本文的文献

8
9
Stability of renal parenchymal volume and function during active surveillance of renal oncocytoma patients.
Urol Oncol. 2023 Apr;41(4):208.e15-208.e23. doi: 10.1016/j.urolonc.2023.01.006. Epub 2023 Feb 25.

本文引用的文献

1
Detection and size measurements of pulmonary nodules in ultra-low-dose CT with iterative reconstruction compared to low dose CT.
Eur J Radiol. 2016 Mar;85(3):564-70. doi: 10.1016/j.ejrad.2015.12.013. Epub 2015 Dec 21.
2
Performance of ACR Lung-RADS in a Clinical CT Lung Screening Program.
J Am Coll Radiol. 2016 Feb;13(2 Suppl):R25-9. doi: 10.1016/j.jacr.2015.12.009.
4
Performance of Lung-RADS in the National Lung Screening Trial: a retrospective assessment.
Ann Intern Med. 2015 Apr 7;162(7):485-91. doi: 10.7326/M14-2086.
6
Small irregular pulmonary nodules in low-dose CT: observer detection sensitivity and volumetry accuracy.
AJR Am J Roentgenol. 2014 Mar;202(3):W202-9. doi: 10.2214/AJR.13.10830.
9
Probability of cancer in pulmonary nodules detected on first screening CT.
N Engl J Med. 2013 Sep 5;369(10):910-9. doi: 10.1056/NEJMoa1214726.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验