Sporny Michael, Guez-Haddad Julia, Kreusch Annett, Shakartzi Sivan, Neznansky Avi, Cross Alice, Isupov Michail N, Qualmann Britta, Kessels Michael M, Opatowsky Yarden
The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
Mol Biol Evol. 2017 Jun 1;34(6):1463-1478. doi: 10.1093/molbev/msx094.
In the development of the human brain, human-specific genes are considered to play key roles, conferring its unique advantages and vulnerabilities. At the time of Homo lineage divergence from Australopithecus, SRGAP2C gradually emerged through a process of serial duplications and mutagenesis from ancestral SRGAP2A (3.4-2.4 Ma). Remarkably, ectopic expression of SRGAP2C endows cultured mouse brain cells, with human-like characteristics, specifically, increased dendritic spine length and density. To understand the molecular mechanisms underlying this change in neuronal morphology, we determined the structure of SRGAP2A and studied the interplay between SRGAP2A and SRGAP2C. We found that: 1) SRGAP2A homo-dimerizes through a large interface that includes an F-BAR domain, a newly identified F-BAR extension (Fx), and RhoGAP-SH3 domains. 2) SRGAP2A has an unusual inverse geometry, enabling associations with lamellipodia and dendritic spine heads in vivo, and scaffolding of membrane protrusions in cell culture. 3) As a result of the initial partial duplication event (∼3.4 Ma), SRGAP2C carries a defective Fx-domain that severely compromises its solubility and membrane-scaffolding ability. Consistently, SRGAP2A:SRAGP2C hetero-dimers form, but are insoluble, inhibiting SRGAP2A activity. 4) Inactivation of SRGAP2A is sensitive to the level of hetero-dimerization with SRGAP2C. 5) The primal form of SRGAP2C (P-SRGAP2C, existing between ∼3.4 and 2.4 Ma) is less effective in hetero-dimerizing with SRGAP2A than the modern SRGAP2C, which carries several substitutions (from ∼2.4 Ma). Thus, the genetic mutagenesis phase contributed to modulation of SRGAP2A's inhibition of neuronal expansion, by introducing and improving the formation of inactive SRGAP2A:SRGAP2C hetero-dimers, indicating a stepwise involvement of SRGAP2C in human evolutionary history.
在人类大脑发育过程中,人类特有的基因被认为起着关键作用,赋予了大脑独特的优势和弱点。在人属从南方古猿分化之时,SRGAP2C通过从祖先SRGAP2A(340万 - 240万年前)连续复制和诱变的过程逐渐出现。值得注意的是,SRGAP2C的异位表达赋予培养的小鼠脑细胞以人类样特征,具体而言,增加了树突棘的长度和密度。为了解这种神经元形态变化背后的分子机制,我们确定了SRGAP2A的结构,并研究了SRGAP2A与SRGAP2C之间的相互作用。我们发现:1)SRGAP2A通过一个大的界面形成同二聚体,该界面包括一个F - BAR结构域、一个新鉴定的F - BAR延伸部分(Fx)和RhoGAP - SH3结构域。2)SRGAP2A具有不寻常的反向几何结构,能够在体内与片状伪足和树突棘头部结合,并在细胞培养中为膜突起提供支架。3)由于最初的部分复制事件(约340万年前),SRGAP2C携带一个有缺陷的Fx结构域,严重损害了其溶解性和膜支架能力。一致地,SRGAP2A:SRAGP2C异二聚体形成,但不溶解,抑制了SRGAP2A的活性。4)SRGAP2A的失活对与SRGAP2C异二聚化的水平敏感。5)SRGAP2C的原始形式(P - SRGAP2C,存在于约340万至240万年前)与现代SRGAP2C相比,在与SRGAP2A异二聚化方面效果较差,现代SRGAP2C有几个取代(约240万年前)。因此,基因诱变阶段通过引入并改善无活性的SRGAP2A:SRGAP2C异二聚体的形成,有助于调节SRGAP2A对神经元扩张的抑制作用,表明SRGAP2C在人类进化历史中逐步参与其中。