State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, China.
WUT-Harvard Joint Nano Key Laboratory, Wuhan University of Technology , Wuhan 430070, China.
ACS Appl Mater Interfaces. 2017 Apr 12;9(14):12680-12686. doi: 10.1021/acsami.6b16576. Epub 2017 Mar 31.
To overcome inferior rate capability and cycle stability of MnO-based materials as a lithium-ion battery anode associated with the pulverization and gradual aggregation during the conversion process, we constructed robust mesoporous N-doped carbon (N-C) protected MnO nanoparticles on reduced graphene oxide (rGO) (MnO@N-C/rGO) by a simple top-down incorporation strategy. Such dual carbon protection endows MnO@N-C/rGO with excellent structural stability and enhanced charge transfer kinetics. At 100 mA g, it exhibits superior rate capability as high as 864.7 mAh g, undergoing the deep charge/discharge for 70 cycles and outstanding cyclic stability (after 1300 cyclic tests at 2000 mA g; 425.0 mAh g remains, accompanying merely 0.004% capacity decay per cycle). This facile method provides a novel strategy for synthesis of porous electrodes by making use of highly insulating materials.
为了克服 MnO 基材料作为锂离子电池负极在转化过程中粉碎和逐渐聚集导致的倍率性能和循环稳定性差的问题,我们通过一种简单的自上而下的整合策略,在还原氧化石墨烯(rGO)上构建了坚固的介孔 N 掺杂碳(N-C)保护的 MnO 纳米粒子(MnO@N-C/rGO)。这种双重碳保护赋予了 MnO@N-C/rGO 优异的结构稳定性和增强的电荷转移动力学。在 100 mA g 的电流密度下,它表现出高达 864.7 mAh g 的优异倍率性能,经过 70 次深充放电循环和出色的循环稳定性(在 2000 mA g 的条件下进行 1300 次循环测试后,仍保持 425.0 mAh g 的容量,每个循环的容量衰减仅为 0.004%)。这种简便的方法为通过利用高绝缘材料合成多孔电极提供了一种新策略。