IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jun;64(6):959-977. doi: 10.1109/TUFFC.2017.2686326. Epub 2017 Mar 22.
In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multiscale nonlocal means (MNLM), yields uniform robust filtering of speckle both in structured and homogeneous regions. The second, denoted unnormalized MNLM (UMNLM), is more conservative in regions of structure assuring minimal disruption of salient image details. Due to the popularity of anisotropic diffusion-based methods in the despeckling literature, we review the connection between anisotropic diffusion and iterative variants of NLM. These iterative variants in turn relate to our multiscale variant. As part of our evaluation, we conduct a simulation study making use of ground truth phantoms generated from clinical B-mode ultrasound images. We evaluate our method against a set of popular methods from the despeckling literature on both fine and coarse speckle noise. In terms of computational efficiency, our method outperforms the other considered methods. Quantitatively on simulations and on a tissue-mimicking phantom, our method is found to be competitive with the state-of-the-art. On clinical B-mode images, our method is found to effectively smooth speckle while preserving low-contrast and highly localized salient image detail.
在本文中,我们提出了一种基于多尺度非局部均值的医学超声去噪方法。多尺度方法可显著减少计算量,与单尺度迭代方法相比,去噪效果也更好。我们提出了该方法的两种变体。第一种变体,称为多尺度非局部均值(MNLM),可在结构和均匀区域中实现均匀稳健的滤波。第二种变体,称为非归一化 MNLM(UMNLM),在结构区域中更保守,可确保突出图像细节最小化干扰。由于各向异性扩散方法在去噪文献中非常流行,我们回顾了各向异性扩散与 NLM 的迭代变体之间的联系。这些迭代变体又与我们的多尺度变体有关。作为评估的一部分,我们利用从临床 B 模式超声图像生成的真实体模进行了模拟研究。我们将我们的方法与去噪文献中一组流行的方法在细和粗噪声两种情况下进行了比较。在计算效率方面,我们的方法优于其他考虑的方法。在模拟和组织模拟体模上进行定量评估时,我们的方法与最先进的方法相当。在临床 B 模式图像上,我们的方法可有效平滑斑点,同时保留低对比度和高度局部化的显著图像细节。