IEEE Trans Image Process. 2017 Jun;26(6):2669-2681. doi: 10.1109/TIP.2017.2685343. Epub 2017 Mar 21.
In the last few years, great efforts have been made to extend the linear projection technique (LPT) for multidimensional data (i.e., tensor), generally referred to as the multilinear projection technique (MPT). The vectorized nature of LPT requires high-dimensional data to be converted into vector, and hence may lose spatial neighborhood information of raw data. MPT well addresses this problem by encoding multidimensional data as general tensors of a second or even higher order. In this paper, we propose a novel multilinear projection technique, called multilinear spatial discriminant analysis (MSDA), to identify the underlying manifold of high-order tensor data. MSDA considers both the nonlocal structure and the local structure of data in the transform domain, seeking to learn the projection matrices from all directions of tensor data that simultaneously maximize the nonlocal structure and minimize the local structure. Different from multilinear principal component analysis (MPCA) that aims to preserve the global structure and tensor locality preserving projection (TLPP) that is in favor of preserving the local structure, MSDA seeks a tradeoff between the nonlocal (global) and local structures so as to drive its discriminant information from the range of the non-local structure and the range of the local structure. This spatial discriminant characteristic makes MSDA have more powerful manifold preserving ability than TLPP and MPCA. Theoretical analysis shows that traditional MPTs, such as multilinear linear discriminant analysis, TLPP, MPCA, and tensor maximum margin criterion, could be derived from the MSDA model by setting different graphs and constraints. Extensive experiments on face databases (ORL, CMU PIE, and the extended Yale-B) and the Weizmann action database demonstrate the effectiveness of the proposed MSDA method.
在过去的几年中,人们已经做出了巨大的努力来扩展线性投影技术(LPT)以用于多维数据(即张量),通常称为多线性投影技术(MPT)。LPT 的向量化性质要求将高维数据转换为向量,因此可能会丢失原始数据的空间邻域信息。MPT 通过将多维数据编码为二阶甚至更高阶的一般张量很好地解决了这个问题。在本文中,我们提出了一种新的多线性投影技术,称为多线性空间判别分析(MSDA),用于识别高阶张量数据的潜在流形。MSDA 在变换域中同时考虑数据的非局部结构和局部结构,试图从张量数据的所有方向学习投影矩阵,同时最大化非局部结构并最小化局部结构。与旨在保留全局结构的多线性主成分分析(MPCA)和有利于保留局部结构的张量局部保持投影(TLPP)不同,MSDA 在非局部(全局)和局部结构之间寻求折衷,以便从非局部结构的范围和局部结构的范围中获取其判别信息。这种空间判别特性使得 MSDA 比 TLPP 和 MPCA 具有更强的流形保持能力。理论分析表明,传统的 MPT,例如多线性线性判别分析、TLPP、MPCA 和张量最大间隔准则,通过设置不同的图和约束,都可以从 MSDA 模型中导出。在面部数据库(ORL、CMU PIE 和扩展的 Yale-B)和 Weizmann 动作数据库上的广泛实验证明了所提出的 MSDA 方法的有效性。