Suppr超能文献

从假设的角度选择样本间 RNA-Seq 标准化方法。

Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions.

机构信息

Department of Statistics, Baker Hall, Carnegie Mellon University, Pittsburgh, PA, USA.

Pomona College.

出版信息

Brief Bioinform. 2018 Sep 28;19(5):776-792. doi: 10.1093/bib/bbx008.

Abstract

RNA-Seq is a widely used method for studying the behavior of genes under different biological conditions. An essential step in an RNA-Seq study is normalization, in which raw data are adjusted to account for factors that prevent direct comparison of expression measures. Errors in normalization can have a significant impact on downstream analysis, such as inflated false positives in differential expression analysis. An underemphasized feature of normalization is the assumptions on which the methods rely and how the validity of these assumptions can have a substantial impact on the performance of the methods. In this article, we explain how assumptions provide the link between raw RNA-Seq read counts and meaningful measures of gene expression. We examine normalization methods from the perspective of their assumptions, as an understanding of methodological assumptions is necessary for choosing methods appropriate for the data at hand. Furthermore, we discuss why normalization methods perform poorly when their assumptions are violated and how this causes problems in subsequent analysis. To analyze a biological experiment, researchers must select a normalization method with assumptions that are met and that produces a meaningful measure of expression for the given experiment.

摘要

RNA-Seq 是一种广泛用于研究不同生物条件下基因行为的方法。RNA-Seq 研究中的一个重要步骤是归一化,即调整原始数据以考虑防止直接比较表达测量的因素。归一化中的错误会对下游分析产生重大影响,例如在差异表达分析中虚报阳性。归一化被忽视的一个特征是方法所依赖的假设,以及这些假设的有效性如何对方法的性能产生重大影响。在本文中,我们解释了假设如何在原始 RNA-Seq 读计数和有意义的基因表达测量之间建立联系。我们从假设的角度检查归一化方法,因为理解方法假设对于选择适合手头数据的方法是必要的。此外,我们讨论了当假设被违反时归一化方法为何表现不佳,以及这如何导致后续分析中的问题。为了分析生物学实验,研究人员必须选择具有满足的假设并为给定实验产生有意义的表达测量的归一化方法。

相似文献

3
How does normalization impact RNA-seq disease diagnosis?归一化如何影响 RNA-seq 疾病诊断?
J Biomed Inform. 2018 Sep;85:80-92. doi: 10.1016/j.jbi.2018.07.016. Epub 2018 Jul 21.
5
Statistical Modeling of High Dimensional Counts.高维计数的统计建模。
Methods Mol Biol. 2021;2284:97-134. doi: 10.1007/978-1-0716-1307-8_7.
6
Normalization of Single-Cell RNA-Seq Data.单细胞 RNA-Seq 数据的归一化处理。
Methods Mol Biol. 2021;2284:303-329. doi: 10.1007/978-1-0716-1307-8_17.
8
RNA-Seq Data Analysis in Galaxy.RNA-Seq 数据分析在 Galaxy 中。
Methods Mol Biol. 2021;2284:367-392. doi: 10.1007/978-1-0716-1307-8_20.
10
Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.单细胞 RNA 测序分析:分步概述。
Methods Mol Biol. 2021;2284:343-365. doi: 10.1007/978-1-0716-1307-8_19.

引用本文的文献

本文引用的文献

6
The Impact of Normalization Methods on RNA-Seq Data Analysis.标准化方法对RNA测序数据分析的影响。
Biomed Res Int. 2015;2015:621690. doi: 10.1155/2015/621690. Epub 2015 Jun 15.
8
Variation in transcriptome size: are we getting the message?转录组大小的变异:我们领会其中的信息了吗?
Chromosoma. 2015 Mar;124(1):27-43. doi: 10.1007/s00412-014-0496-3. Epub 2014 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验