Danieli Coraline, Bossard Nadine, Roche Laurent, Belot Aurelien, Uhry Zoe, Charvat Hadrien, Remontet Laurent
Hospices Civils de Lyon, Service de Biostatistique-Bioinformatique, F-69003, Lyon, France, and CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, Université Lyon 1, F-69100, Villeurbanne, France and McGill University Health Center, Department of Epidemiology, Biostatistics and Occupational Health, H3A 1A2, Montreal, QC, Canada.
Hospices Civils de Lyon, Service de Biostatistique-Bioinformatique, F-69003, Lyon, France and CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, Université Lyon 1, F-69100, Villeurbanne, France.
Biostatistics. 2017 Jul 1;18(3):505-520. doi: 10.1093/biostatistics/kxw056.
Net survival, the one that would be observed if the disease under study was the only cause of death, is an important, useful, and increasingly used indicator in public health, especially in population-based studies. Estimates of net survival and effects of prognostic factor can be obtained by excess hazard regression modeling. Whereas various diagnostic tools were developed for overall survival analysis, few methods are available to check the assumptions of excess hazard models. We propose here two formal tests to check the proportional hazard assumption and the validity of the functional form of the covariate effects in the context of flexible parametric excess hazard modeling. These tests were adapted from martingale residual-based tests for parametric modeling of overall survival to allow adding to the model a necessary element for net survival analysis: the population mortality hazard. We studied the size and the power of these tests through an extensive simulation study based on complex but realistic data. The new tests showed sizes close to the nominal values and satisfactory powers. The power of the proportionality test was similar or greater than that of other tests already available in the field of net survival. We illustrate the use of these tests with real data from French cancer registries.
净生存率是指如果所研究的疾病是唯一的死亡原因时所观察到的生存率,它是公共卫生领域中一项重要、有用且使用越来越频繁的指标,尤其是在基于人群的研究中。净生存率的估计以及预后因素的效应可以通过超额风险回归模型获得。虽然已经开发了各种用于总体生存分析的诊断工具,但用于检验超额风险模型假设的方法却很少。在此,我们提出两种形式化检验,以在灵活的参数化超额风险建模背景下检验比例风险假设和协变量效应函数形式的有效性。这些检验是从基于鞅残差的总体生存参数化建模检验改编而来,以便在模型中加入净生存分析所需的一个要素:人群死亡风险。我们通过基于复杂但现实的数据进行的广泛模拟研究,研究了这些检验的大小和功效。新检验显示其大小接近名义值且功效令人满意。比例性检验的功效与净生存领域中已有的其他检验相似或更高。我们用来自法国癌症登记处的真实数据说明了这些检验的用途。