Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University , 99 Shangda Road, Shanghai, People's Republic of China , 200444.
ACS Nano. 2017 Apr 25;11(4):4198-4205. doi: 10.1021/acsnano.7b01152. Epub 2017 Mar 28.
The metal-organic-framework (MOF) approach is demonstrated as an effective strategy for the morphology evolution control of MIL-53(Fe) with assistance of microwave irradiation. Owing to the homogeneous nucleation offered by microwave irradiation and confined porosity and skeleton by MOF templates, various porous FeO nanostructures including spindle, concave octahedron, solid octahedron, yolk-shell octahedron, and nanorod with porosity control are derived by simply adjusting the irradiation time. The formation mechanism for the MOF precursors and their derived iron oxides with morphology control is investigated. The main product of the mesoporous yolk-shell octahedron-in-octahedron FeO nanostructure is also found to be a promising anode material for lithium-ion batteries due to its excellent Li-storage performance. It can deliver a reversible larger-than-theoretical capacity of 1176 mAh g after 200 cycles at 100 mA g and good high-rate performance (744 mAh g after 500 cycles at 1 A g).
采用金属-有机骨架(MOF)方法,在微波辐射的辅助下,实现 MIL-53(Fe) 的形态演变控制。由于微波辐射提供了均匀的成核条件,并且 MOF 模板限制了孔隙率和骨架,因此通过简单地调整照射时间,得到了各种具有多孔结构的 FeO 纳米结构,包括纺锤体、凹八面体、实心八面体、蛋黄壳八面体和具有孔隙率控制的纳米棒。研究了 MOF 前体及其衍生的具有形态控制的铁氧化物的形成机制。还发现介孔蛋黄壳八面体-八面体 FeO 纳米结构的主要产物也是一种很有前途的锂离子电池阳极材料,因为其具有优异的储锂性能。在 100 mA g 的电流密度下,经过 200 次循环后,其可逆比容量超过理论比容量(1176 mAh g),并且具有良好的倍率性能(在 1 A g 的电流密度下,经过 500 次循环后,其比容量仍可达 744 mAh g)。