College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China; Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan 410083, PR China; Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, PR China; Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha, Hunan 410083, PR China.
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China; Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan 410083, PR China; Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, PR China.
J Colloid Interface Sci. 2018 Nov 15;530:127-136. doi: 10.1016/j.jcis.2018.06.057. Epub 2018 Jun 22.
The performance of energy storage materials is substantially dependent on their nanostructures. Herein, Ni-1,3,5-benzenetricarboxylate metal-organic frameworks (Ni-BTC MOFs) with different morphologies are controllably synthesized using a facile solvothermal method by simply adjusting the solvent and their electrochemical performance as an anode material for lithium-ion batteries is thoroughly investigated. Among the synthesized Ni-BTC MOFs with different morphologies, a hierarchical mesoporous flower-like Ni-BTC MOF (Ni-BTC) assembled from two-dimensional nanosheets shows the best electrochemical properties including a high capacity of 1085 mA h g at 100 mA g (358 mA h g at 5000 mA g), excellent cycling stability at 1000 mA g for 1000 cycles, and great rate performance, which is superior to most of the reported MOF-based anode materials for lithium-ion batteries. The outstanding electrochemical performance of Ni-BTC is originated from its unique and stable hierarchical mesoporous morphology with a high specific surface area and improved electrical/ionic conductivity. Moreover, our study demonstrates that the charge-discharge mechanism of the Ni-BTC electrode involves the insertion/extraction of Li ions to/from the organic moieties in Ni-BTC during the charge-discharge process without the direct engagement of Ni. This work highlights that the nanostructure design is an effective strategy to obtain promising energy storage materials.
储能材料的性能在很大程度上取决于其纳米结构。在此,通过简单地调整溶剂,采用一种简便的溶剂热法可控合成了具有不同形态的镍-1,3,5-苯三甲酸金属有机骨架(Ni-BTC MOFs),并深入研究了它们作为锂离子电池阳极材料的电化学性能。在所合成的具有不同形态的 Ni-BTC MOFs 中,由二维纳米片组装而成的分级介孔花状 Ni-BTC MOF(Ni-BTC)表现出最佳的电化学性能,包括在 100 mA g 时的高容量 1085 mA h g(在 5000 mA g 时为 358 mA h g)、在 1000 mA g 时 1000 次循环的优异循环稳定性以及出色的倍率性能,优于大多数报道的基于 MOF 的锂离子电池阳极材料。Ni-BTC 的优异电化学性能源于其独特且稳定的分级介孔形态,具有高比表面积和改善的电子/离子导电性。此外,我们的研究表明,Ni-BTC 电极的充放电机制涉及在充放电过程中 Li 离子从 Ni-BTC 中的有机部分嵌入/提取,而无需 Ni 的直接参与。这项工作强调了纳米结构设计是获得有前途的储能材料的有效策略。