Wen Wei, Khatibi Siamak
Department of Technology and Aesthetics, Blekinge Tekniska Högskola, 371 79 Karlskrona, Sweden.
Sensors (Basel). 2017 Mar 18;17(3):620. doi: 10.3390/s17030620.
Achieving a high fill factor is a bottleneck problem for capturing high-quality images. There are hardware and software solutions to overcome this problem. In the solutions, the fill factor is known. However, this is an industrial secrecy by most image sensor manufacturers due to its direct effect on the assessment of the sensor quality. In this paper, we propose a method to estimate the fill factor of a camera sensor from an arbitrary single image. The virtual response function of the imaging process and sensor irradiance are estimated from the generation of virtual images. Then the global intensity values of the virtual images are obtained, which are the result of fusing the virtual images into a single, high dynamic range radiance map. A non-linear function is inferred from the original and global intensity values of the virtual images. The fill factor is estimated by the conditional minimum of the inferred function. The method is verified using images of two datasets. The results show that our method estimates the fill factor correctly with significant stability and accuracy from one single arbitrary image according to the low standard deviation of the estimated fill factors from each of images and for each camera.
实现高填充因子是捕获高质量图像的一个瓶颈问题。有硬件和软件解决方案来克服这个问题。在这些解决方案中,填充因子是已知的。然而,由于其对传感器质量评估的直接影响,这对大多数图像传感器制造商来说是一个行业秘密。在本文中,我们提出了一种从任意单幅图像估计相机传感器填充因子的方法。通过生成虚拟图像来估计成像过程的虚拟响应函数和传感器辐照度。然后获得虚拟图像的全局强度值,这是将虚拟图像融合成单个高动态范围辐射度图的结果。从虚拟图像的原始强度值和全局强度值推断出一个非线性函数。通过推断函数的条件最小值来估计填充因子。使用两个数据集的图像对该方法进行了验证。结果表明,我们的方法能够从任意单幅图像中正确估计填充因子,具有显著的稳定性和准确性,这体现在每幅图像以及每个相机的估计填充因子的低标准偏差上。