Department of Bioenergy Science and Technology (H.W.L., N.Y.K., S.K.P., C.C., J.K.) and Kumho Life Science Laboratory (J.K.), Chonnam National University, Gwangju 500-757, Korea; and.
Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 501-759, Korea (S.H.L.).
Plant Physiol. 2017 May;174(1):301-311. doi: 10.1104/pp.17.00013. Epub 2017 Mar 23.
LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKEs (hereafter referred to as LBD) are plant-specific transcription factors that play important roles in a plethora of plant growth and development. The leucine (Leu) zipper-like coiled-coil motif in the lateral organ boundaries domain of the class I LBD proteins has been proposed to mediate protein dimerization, but it has not been experimentally assessed yet. LBD16 and LBD18 have been well characterized to play important roles in lateral root development in Arabidopsis (). Here, we investigated the role of the coiled-coil motif in the dimerization of LBD16 and LBD18 and in transcriptional regulation and biological function. We built the molecular models of the coiled coil of LBD16 and LBD18, providing the probable Leu zipper models of the helix dimer. Using a variety of molecular techniques, such as bimolecular fluorescence complementation, luciferase complementation imaging, GST pull down, and coimmunoprecipitation assays, we showed that the conserved Leu or valine residues in the coiled-coil motif are critical for the dimerization of LBD16 or LBD18. Using transgenic Arabidopsis plants that overexpress HA:LBD16 or HA:LBD16 in or HA:LBD18 or HA:LBD18 in , we demonstrated that the homodimerization of LBD18 mediated by the coiled-coil motif is crucial for transcriptional regulation via promoter binding and for lateral root formation. In addition, we found that the carboxyl-terminal region beyond the coiled-coil motif in LBD18 acts as an additional dimerization domain. These results provide a molecular basis for homodimerization and heterodimerization among the 42 Arabidopsis LBD family members for displaying their biological functions.
侧生器官边界域/不对称叶 2 类(以下简称 LBD)是植物特异性转录因子,在植物生长和发育的多个方面发挥重要作用。I 类 LBD 蛋白的侧生器官边界域中的亮氨酸(Leu)拉链样卷曲螺旋基序被认为介导蛋白二聚化,但尚未进行实验评估。LBD16 和 LBD18 已被很好地表征为在拟南芥侧根发育中发挥重要作用()。在这里,我们研究了卷曲螺旋基序在 LBD16 和 LBD18 的二聚化以及转录调控和生物学功能中的作用。我们构建了 LBD16 和 LBD18 的卷曲螺旋分子模型,提供了螺旋二聚体的可能亮氨酸拉链模型。使用各种分子技术,如双分子荧光互补、荧光素酶互补成像、GST 下拉和共免疫沉淀测定,我们表明卷曲螺旋基序中的保守亮氨酸或缬氨酸残基对于 LBD16 或 LBD18 的二聚化至关重要。使用在 中过表达 HA:LBD16 或 HA:LBD16 的转基因拟南芥植物,或在 中过表达 HA:LBD18 或 HA:LBD18 的转基因拟南芥植物,我们证明了卷曲螺旋基序介导的 LBD18 同源二聚化对于通过启动子结合进行转录调控和侧根形成至关重要。此外,我们发现 LBD18 中卷曲螺旋基序之外的羧基末端区域充当额外的二聚化结构域。这些结果为 42 个拟南芥 LBD 家族成员之间的同源二聚化和异源二聚化提供了分子基础,以展示它们的生物学功能。