Suppr超能文献

庞贝氏()小鼠的气道平滑肌功能障碍

Airway smooth muscle dysfunction in Pompe ( ) mice.

作者信息

Keeler Allison M, Liu Donghai, Zieger Marina, Xiong Lang, Salemi Jeffrey, Bellvé Karl, Byrne Barry J, Fuller David D, ZhuGe Ronghua, ElMallah Mai K

机构信息

Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts.

Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2017 Jun 1;312(6):L873-L881. doi: 10.1152/ajplung.00568.2016. Epub 2017 Mar 23.

Abstract

Pompe disease is an autosomal recessive disorder caused by a deficiency of acid α-glucosidase (GAA), an enzyme responsible for hydrolyzing lysosomal glycogen. Deficiency of GAA leads to systemic glycogen accumulation in the lysosomes of skeletal muscle, motor neurons, and smooth muscle. Skeletal muscle and motor neuron pathology are known to contribute to respiratory insufficiency in Pompe disease, but the role of airway pathology has not been evaluated. Here we propose that GAA enzyme deficiency disrupts the function of the trachea and bronchi and this lower airway pathology contributes to respiratory insufficiency in Pompe disease. Using an established mouse model of Pompe disease, the mouse, we compared histology, pulmonary mechanics, airway smooth muscle (ASM) function, and calcium signaling between and age-matched wild-type (WT) mice. Lysosomal glycogen accumulation was observed in the smooth muscle of both the bronchi and the trachea in but not WT mice. Furthermore, mice had hyporesponsive airway resistance and bronchial ring contraction to the bronchoconstrictive agents methacholine (MCh) and potassium chloride (KCl) and to a bronchodilator (albuterol). Finally, calcium signaling during bronchiolar smooth muscle contraction was impaired in mice indicating impaired extracellular calcium influx. We conclude that GAA enzyme deficiency leads to glycogen accumulation in the trachea and bronchi and impairs the ability of lower ASM to regulate calcium and respond appropriately to bronchodilator or constrictors. Accordingly, ASM dysfunction may contribute to respiratory impairments in Pompe disease.

摘要

庞贝病是一种常染色体隐性疾病,由酸性α-葡萄糖苷酶(GAA)缺乏引起,GAA是一种负责水解溶酶体糖原的酶。GAA缺乏导致骨骼肌、运动神经元和平滑肌的溶酶体中出现全身性糖原积累。已知骨骼肌和运动神经元病变会导致庞贝病患者出现呼吸功能不全,但气道病变的作用尚未得到评估。在此,我们提出GAA酶缺乏会破坏气管和支气管的功能,这种下气道病变会导致庞贝病患者呼吸功能不全。我们使用已建立的庞贝病小鼠模型(小鼠),比较了其与年龄匹配的野生型(WT)小鼠之间的组织学、肺力学、气道平滑肌(ASM)功能和钙信号传导。在小鼠而非WT小鼠的支气管和气管平滑肌中观察到溶酶体糖原积累。此外,小鼠对支气管收缩剂乙酰甲胆碱(MCh)和氯化钾(KCl)以及支气管扩张剂(沙丁胺醇)的气道阻力和支气管环收缩反应低下。最后,小鼠细支气管平滑肌收缩过程中的钙信号传导受损,表明细胞外钙内流受损。我们得出结论,GAA酶缺乏会导致气管和支气管中糖原积累,并损害下呼吸道ASM调节钙以及对支气管扩张剂或收缩剂做出适当反应的能力。因此,ASM功能障碍可能导致庞贝病患者出现呼吸功能损害。

相似文献

1
Airway smooth muscle dysfunction in Pompe ( ) mice.
Am J Physiol Lung Cell Mol Physiol. 2017 Jun 1;312(6):L873-L881. doi: 10.1152/ajplung.00568.2016. Epub 2017 Mar 23.
2
GAA deficiency disrupts distal airway cells in Pompe disease.
Am J Physiol Lung Cell Mol Physiol. 2023 Sep 1;325(3):L288-L298. doi: 10.1152/ajplung.00032.2023. Epub 2023 Jun 27.
4
Suppression of mTORC1 activation in acid-α-glucosidase-deficient cells and mice is ameliorated by leucine supplementation.
Am J Physiol Regul Integr Comp Physiol. 2014 Nov 15;307(10):R1251-9. doi: 10.1152/ajpregu.00212.2014. Epub 2014 Sep 17.
5
Remarkably low fibroblast acid α-glucosidase activity in three adults with Pompe disease.
Mol Genet Metab. 2012 Nov;107(3):485-9. doi: 10.1016/j.ymgme.2012.09.003. Epub 2012 Sep 7.
6
Glycogen accumulation in smooth muscle of a Pompe disease mouse model.
J Smooth Muscle Res. 2021;57(0):8-18. doi: 10.1540/jsmr.57.8.
7
Enhanced efficacy of enzyme replacement therapy in Pompe disease through mannose-6-phosphate receptor expression in skeletal muscle.
Mol Genet Metab. 2011 Jun;103(2):107-12. doi: 10.1016/j.ymgme.2011.02.006. Epub 2011 Feb 13.
8
Small molecule inhibition of glycogen synthase I reduces muscle glycogen content and improves biomarkers in a mouse model of Pompe disease.
Am J Physiol Endocrinol Metab. 2024 Oct 1;327(4):E524-E532. doi: 10.1152/ajpendo.00175.2024. Epub 2024 Aug 22.
9
Restoration of muscle functionality by genetic suppression of glycogen synthesis in a murine model of Pompe disease.
Hum Mol Genet. 2010 Feb 15;19(4):684-96. doi: 10.1093/hmg/ddp535. Epub 2009 Dec 3.
10
Lentiviral gene therapy with IGF2-tagged GAA normalizes the skeletal muscle proteome in murine Pompe disease.
J Proteomics. 2024 Jan 16;291:105037. doi: 10.1016/j.jprot.2023.105037. Epub 2023 Oct 30.

引用本文的文献

1
GAA replacement improves respiratory muscle, neural, and alveolar pathology in the pompe mouse.
Respir Physiol Neurobiol. 2025 Jul;335:104433. doi: 10.1016/j.resp.2025.104433. Epub 2025 Apr 25.
2
Transitional cell states sculpt tissue topology during lung regeneration.
Cell Stem Cell. 2023 Nov 2;30(11):1486-1502.e9. doi: 10.1016/j.stem.2023.10.001.
3
Monitoring and Management of Respiratory Function in Pompe Disease: Current Perspectives.
Ther Clin Risk Manag. 2023 Sep 1;19:713-729. doi: 10.2147/TCRM.S362871. eCollection 2023.
4
GAA deficiency disrupts distal airway cells in Pompe disease.
Am J Physiol Lung Cell Mol Physiol. 2023 Sep 1;325(3):L288-L298. doi: 10.1152/ajplung.00032.2023. Epub 2023 Jun 27.
5
Infantile Pompe disease with intrauterine onset: a case report and literature review.
Ital J Pediatr. 2022 Nov 21;48(1):187. doi: 10.1186/s13052-022-01379-3.
6
What's new and what's next for gene therapy in Pompe disease?
Expert Opin Biol Ther. 2022 Sep;22(9):1117-1135. doi: 10.1080/14712598.2022.2067476. Epub 2022 Apr 27.
7
Glycogen accumulation in smooth muscle of a Pompe disease mouse model.
J Smooth Muscle Res. 2021;57(0):8-18. doi: 10.1540/jsmr.57.8.
9
Pompe Disease: New Developments in an Old Lysosomal Storage Disorder.
Biomolecules. 2020 Sep 18;10(9):1339. doi: 10.3390/biom10091339.
10
The Respiratory Phenotype of Pompe Disease Mouse Models.
Int J Mol Sci. 2020 Mar 24;21(6):2256. doi: 10.3390/ijms21062256.

本文引用的文献

2
Store-operated calcium entry is required for sustained contraction and Ca oscillations of airway smooth muscle.
J Physiol. 2017 May 15;595(10):3203-3218. doi: 10.1113/JP272694. Epub 2016 Aug 2.
3
Diaphragm Pacing as a Rehabilitative Tool for Patients With Pompe Disease Who Are Ventilator-Dependent: Case Series.
Phys Ther. 2016 May;96(5):696-703. doi: 10.2522/ptj.20150122. Epub 2016 Feb 18.
4
Stroke in Young-Dilative Arteriopathy: A Clue to Late-Onset Pompe's Disease?
J Stroke Cerebrovasc Dis. 2016 Apr;25(4):e50-2. doi: 10.1016/j.jstrokecerebrovasdis.2016.01.021. Epub 2016 Feb 4.
5
Pompe disease: Shared and unshared features of lysosomal storage disorders.
Rare Dis. 2015 Jul 15;3(1):e1068978. doi: 10.1080/21675511.2015.1068978. eCollection 2015.
7
Paediatric Tracheomalacia.
Paediatr Respir Rev. 2016 Jan;17:9-15. doi: 10.1016/j.prrv.2015.03.002. Epub 2015 Mar 17.
8
Postmortem Findings and Clinical Correlates in Individuals with Infantile-Onset Pompe Disease.
JIMD Rep. 2015;23:45-54. doi: 10.1007/8904_2015_426. Epub 2015 Mar 13.
9
Defects in calcium homeostasis and mitochondria can be reversed in Pompe disease.
Autophagy. 2015;11(2):385-402. doi: 10.1080/15548627.2015.1009779.
10
Delivered dose estimate to standardize airway hyperresponsiveness assessment in mice.
Am J Physiol Lung Cell Mol Physiol. 2015 Apr 15;308(8):L837-46. doi: 10.1152/ajplung.00343.2014. Epub 2015 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验