Liu Yazi, Xu Jian, Wang Liqiong, Zhang Huayang, Xu Ping, Duan Xiaoguang, Sun Hongqi, Wang Shaobin
Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
School of Chemistry and Life Science, Nanjing University Jinling College, Nanjing 210089, China.
Nanomaterials (Basel). 2017 Mar 14;7(3):64. doi: 10.3390/nano7030064.
Three-dimensional flower-like BiOI/BiOX (X = Br or Cl) hybrids were synthesized via a facile one-pot solvothermal approach. With systematic characterizations by X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), the Brunauer-Emmett-Teller (BET)specific surface area, X-ray photoelectron spectroscopy (XPS), and the UV-Vis diffuse reflectance spectra (DRS), the BiOI/BiOCl composites showed a fluffy and porous 3-D architecture with a large specific surface area (SSA) and high capability for light absorption. Among all the BiOX (X = Cl, Br, I) and BiOI/BiOX (X = Cl or Br) composites, BiOI/BiOCl stands out as the most efficient photocatalyst under both visible and UV light irradiations for methyl orange (MO) oxidation. The reaction rate of MO degradation on BiOI/BiOCl was 2.1 times higher than that on pure BiOI under visible light. Moreover, BiOI/BiOCl exhibited enhanced water oxidation efficiency for O₂ evolution which was 1.5 times higher than BiOI. The enhancement of photocatalytic activity could be attributed to the formation of a heterojunction between BiOI and BiOCl, with a nanoporous structure, a larger SSA, and a stronger light absorbance capacity especially in the visible-light region. The in situ electron paramagnetic resonance (EPR) revealed that BiOI/BiOCl composites could effectively evolve superoxide radicals and hydroxyl radicals for photodegradation, and the superoxide radicals are the dominant reactive species. The superb photocatalytic activity of BiOI/BiOCl could be utilized for the degradation of various industrial dyes under natural sunlight irradiation which is of high significance for the remediation of industrial wastewater in the future.
通过简便的一锅溶剂热法合成了三维花状的BiOI/BiOX(X = Br或Cl)杂化物。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、布鲁诺尔-埃米特-泰勒(BET)比表面积、X射线光电子能谱(XPS)以及紫外-可见漫反射光谱(DRS)进行系统表征,结果表明BiOI/BiOCl复合材料呈现出蓬松多孔的三维结构,具有较大的比表面积(SSA)和高吸光能力。在所有的BiOX(X = Cl、Br、I)和BiOI/BiOX(X = Cl或Br)复合材料中,BiOI/BiOCl在可见光和紫外光照射下对甲基橙(MO)氧化而言是最有效的光催化剂。在可见光下,BiOI/BiOCl上MO降解的反应速率比纯BiOI上高2.1倍。此外,BiOI/BiOCl对O₂析出表现出增强的水氧化效率,比BiOI高1.5倍。光催化活性的增强可归因于BiOI和BiOCl之间形成了异质结,具有纳米多孔结构、更大的SSA以及更强的吸光能力,尤其是在可见光区域。原位电子顺磁共振(EPR)表明,BiOI/BiOCl复合材料能有效地产生超氧自由基和羟基自由基用于光降解,且超氧自由基是主要的活性物种。BiOI/BiOCl出色的光催化活性可用于在自然阳光照射下降解各种工业染料,这对未来工业废水的修复具有重要意义。