Pérez-Hernández Ismael H, Domínguez-Fuentes Josué Misael, Palomar-Morales Martín, Zazueta-Mendizabal Ana Cecilia, Baiza-Gutman Arturo, Mejía-Zepeda Ricardo
Unidad de Biomedicina, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, C.P., Mexico.
Unidad de Morfofisiología, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, C.P., Mexico.
J Bioenerg Biomembr. 2017 Jun;49(3):231-239. doi: 10.1007/s10863-017-9700-5. Epub 2017 Mar 24.
The biological membranes are important in cell function but, during development of diseases such as diabetes, they are impaired. Consequently, membrane-associated biological processes are impaired as well. The mitochondria are important organelles where oxidative phosphorylation takes place, a process closely related with the membranes. In general, it is accepted that the development process of diabetes decreases membrane fluidity. However, in some cases, it has been found to increase membrane fluidity of mitochondria but to decrease the Respiratory Control (RC) index. In this study we found an increase of membrane fluidity and an increase of the RC at an early phase of the development of a type 2 diabetes model. We measured the lipoperoxidation, analyzed the fatty acids composition by gas chromatography, and assessed membrane fluidity using three fluorescent monitors located at different depths inside the bilayer, dipyrenilpropane (DPyP), diphenylhexatriene (DPH), and trimethylammonium diphenylhexatriene (TMA-DPH). Our findings indicate that in the initial stage of diabetes development, when lipoperoxidation still is not significant, the membrane fluidity of liver mitochondria increases because of the increment in the unsaturated to saturated fatty acids ratio (U/S), thus producing an increase of the RC. The membrane fluidity is not the same at all depths in the bilayer. Contrary to the results obtained in mitochondria, the diabetes induced a decrease in the U/S fatty acids ratio of liver total lipids, indicating that the mitochondria might have an independent mechanism for regulating its fatty acids composition.
生物膜在细胞功能中起着重要作用,但在糖尿病等疾病的发展过程中,它们会受到损害。因此,与膜相关的生物过程也会受损。线粒体是进行氧化磷酸化的重要细胞器,这一过程与膜密切相关。一般来说,人们认为糖尿病的发展过程会降低膜流动性。然而,在某些情况下,已发现糖尿病会增加线粒体的膜流动性,但会降低呼吸控制(RC)指数。在本研究中,我们发现在2型糖尿病模型发展的早期阶段,膜流动性增加且RC增加。我们测量了脂质过氧化,通过气相色谱分析了脂肪酸组成,并使用位于双层内部不同深度的三种荧光监测器,即二芘基丙烷(DPyP)、二苯基己三烯(DPH)和三甲基铵二苯基己三烯(TMA-DPH)评估了膜流动性。我们的研究结果表明,在糖尿病发展的初始阶段,当脂质过氧化尚不显著时,肝脏线粒体的膜流动性因不饱和脂肪酸与饱和脂肪酸比例(U/S)的增加而增加,从而导致RC增加。双层中不同深度的膜流动性并不相同。与线粒体中获得的结果相反,糖尿病导致肝脏总脂质的U/S脂肪酸比例降低,这表明线粒体可能具有独立调节其脂肪酸组成的机制。