Suppr超能文献

基于单细胞的拷贝数变异分析平台,通过数字计数扩增的基因组 DNA 片段。

Single-Cell-Based Platform for Copy Number Variation Profiling through Digital Counting of Amplified Genomic DNA Fragments.

机构信息

Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China.

出版信息

ACS Appl Mater Interfaces. 2017 Apr 26;9(16):13958-13964. doi: 10.1021/acsami.7b03146. Epub 2017 Apr 14.

Abstract

We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.

摘要

我们开发了一种新型的基于单细胞的平台,通过数字计数扩增的基因组 DNA 片段,称为多分数扩增(mfA),以检测单个细胞中的拷贝数变异(CNV)。扩增是从单个细胞中获取基因组信息所必需的,同时引入了不可避免的偏差。与直接从测序深度模式推断 CNV 谱的流行方法不同,我们的 mfA 平台在扩增前将来自单个细胞的 DNA 分子变性并分离成反应混合物的多个分数。通过检查特定片段的每个分数的测序结果,并应用分段合并最大似然算法进行拷贝数计算,我们对基于测序深度的 CNV 识别进行数字化,从而提供一种对扩增偏差不敏感的方法。在本文中,我们通过多重置换扩增(MDA)化学展示了 mfA 平台。在执行 mfA 平台时,降低了 MDA 的噪声;因此,可以将单细胞 CNV 识别的分辨率提高到 100 kb。我们还可以使用 mfA 平台确定无等位基因丢失的基因组区域,这对于传统的单细胞扩增方法是不可能的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验