Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University , Beijing 100871, China.
ACS Appl Mater Interfaces. 2017 Apr 26;9(16):13958-13964. doi: 10.1021/acsami.7b03146. Epub 2017 Apr 14.
We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.
我们开发了一种新型的基于单细胞的平台,通过数字计数扩增的基因组 DNA 片段,称为多分数扩增(mfA),以检测单个细胞中的拷贝数变异(CNV)。扩增是从单个细胞中获取基因组信息所必需的,同时引入了不可避免的偏差。与直接从测序深度模式推断 CNV 谱的流行方法不同,我们的 mfA 平台在扩增前将来自单个细胞的 DNA 分子变性并分离成反应混合物的多个分数。通过检查特定片段的每个分数的测序结果,并应用分段合并最大似然算法进行拷贝数计算,我们对基于测序深度的 CNV 识别进行数字化,从而提供一种对扩增偏差不敏感的方法。在本文中,我们通过多重置换扩增(MDA)化学展示了 mfA 平台。在执行 mfA 平台时,降低了 MDA 的噪声;因此,可以将单细胞 CNV 识别的分辨率提高到 100 kb。我们还可以使用 mfA 平台确定无等位基因丢失的基因组区域,这对于传统的单细胞扩增方法是不可能的。