Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, P.R. China.
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, P.R. China.
ACS Appl Mater Interfaces. 2017 Apr 12;9(14):12750-12758. doi: 10.1021/acsami.7b01666. Epub 2017 Mar 30.
The fabrication of printed high-performance and environmentally stable n-type single-walled carbon nanotube (SWCNT) transistors and their integration into complementary (i.e., complementary metal-oxide-semiconductor, CMOS) circuits are widely recognized as key to achieving the full potential of carbon nanotube electronics. Here, we report a simple, efficient, and robust method to convert the polarity of SWCNT thin-film transistors (TFTs) using cheap and readily available ethanolamine as an electron doping agent. Printed p-type bottom-gate SWCNT TFTs can be selectively converted into n-type by deposition of ethanolamine inks on the transistor active region via aerosol jet printing. Resulted n-type TFTs show excellent electrical properties with an on/off ratio of 10, effective mobility up to 30 cm V s, small hysteresis, and small subthreshold swing (90-140 mV dec), which are superior compared to the original p-type SWCNT devices. The n-type SWCNT TFTs also show good stability in air, and any deterioration of performance due to shelf storage can be fully recovered by a short low-temperature annealing. The easy polarity conversion process allows construction of CMOS circuitry. As an example, CMOS inverters were fabricated using printed p-type and n-type TFTs and exhibited a large noise margin (50 and 103% of 1/2 V = 1 V) and a voltage gain as high as 30 (at V = 1 V). Additionally, the CMOS inverters show full rail-to-rail output voltage swing and low power dissipation (0.1 μW at V = 1 V). The new method paves the way to construct fully functional complex CMOS circuitry by printed TFTs.
制备高性能和环境稳定的 n 型单壁碳纳米管(SWCNT)晶体管,并将其集成到互补(即互补金属氧化物半导体,CMOS)电路中,被广泛认为是实现碳纳米管电子学全部潜力的关键。在这里,我们报告了一种简单、高效、稳健的方法,使用廉价且易得的乙醇胺作为电子掺杂剂来转换 SWCNT 薄膜晶体管(TFT)的极性。通过气溶胶喷射打印将乙醇胺墨水沉积在晶体管有源区上,可以将印刷的 p 型底栅 SWCNT TFT 选择性地转换为 n 型。所得的 n 型 TFT 具有出色的电性能,开关比为 10,有效迁移率高达 30 cm V s,小的滞后和小的亚阈值摆幅(90-140 mV dec),与原始的 p 型 SWCNT 器件相比具有优势。n 型 SWCNT TFT 在空气中也表现出良好的稳定性,任何由于货架存储而导致的性能恶化都可以通过短时间的低温退火完全恢复。这种易于转换极性的过程允许构建 CMOS 电路。例如,使用印刷的 p 型和 n 型 TFT 制造了 CMOS 反相器,并表现出大的噪声裕度(50%和 103%的 1/2 V = 1 V)和高达 30 的电压增益(在 V = 1 V 时)。此外,CMOS 反相器显示出全轨到轨输出电压摆幅和低功耗(在 V = 1 V 时为 0.1 μW)。这种新方法为通过印刷 TFT 构建全功能复杂的 CMOS 电路铺平了道路。