Suppr超能文献

利用无人机系统(UAS)和热成像技术自动检测和计数海洋野生动物。

Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery.

机构信息

Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University Marine Laboratory, 135 Duke Marine Lab Rd, Beaufort, NC 28516, USA.

Peches et Oceans Canada/Fisheries and Oceans Canada. Institut Maurice-Lamontagne/Maurice Lamontagne Institute, C.P. 1000/P.O. Box 1000 850 Route de la Mer Mont-Joli, QC, G5H 3Z4, Canada.

出版信息

Sci Rep. 2017 Mar 24;7:45127. doi: 10.1038/srep45127.

Abstract

Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95-98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts' 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management.

摘要

估算动物种群数量对于野生动物管理至关重要。航空调查被用于生成种群估计值,但可能受到成本、后勤复杂性和人员风险的限制。此外,在航空图像中对生物进行人工计数可能既繁琐又主观。自动化方法显示出前景,但可能受到设置时间长和难以区分聚集动物的限制。我们结合了无人机系统(UAS)、热成像和计算机视觉,以改进传统的野生动物调查方法。在 2015 年春季,我们飞行了配备热传感器的固定翼 UAS,对加拿大东部的两个灰海豹(Halichoerus grypus)繁殖地进行了成像。人类分析员手动对图像中的个体海豹进行计数和分类。同时,一种自动化分类和检测算法根据海豹的温度、大小和热特征形状来区分海豹。自动计数与人工估计值的误差在 95-98%之间;在马鞍岛,模型估计有 894 只海豹,而分析员的估计数为 913 只;在海伊岛,模型估计有 2188 只海豹,而分析员的估计数为 2311 只。该算法通过有效地识别聚集中的海豹,同时将模型设置时间保持在最小,克服了计算机视觉的缺点。我们的研究说明了如何结合无人机系统、热成像和自动检测来高效地收集对野生动物管理至关重要的种群数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/425e/5364474/5b3d92d2b653/srep45127-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验