Suppr超能文献

人工智能助力大型哺乳动物自动检测,推动无人机调查升级。

Artificial intelligence for automated detection of large mammals creates path to upscale drone surveys.

机构信息

Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA.

School of Environmental Studies, University of Victoria, Victoria, BC, V8W 2Y2, Canada.

出版信息

Sci Rep. 2023 Jan 18;13(1):947. doi: 10.1038/s41598-023-28240-9.

Abstract

Imagery from drones is becoming common in wildlife research and management, but processing data efficiently remains a challenge. We developed a methodology for training a convolutional neural network model on large-scale mosaic imagery to detect and count caribou (Rangifer tarandus), compare model performance with an experienced observer and a group of naïve observers, and discuss the use of aerial imagery and automated methods for large mammal surveys. Combining images taken at 75 m and 120 m above ground level, a faster region-based convolutional neural network (Faster-RCNN) model was trained in using annotated imagery with the labels: "adult caribou", "calf caribou", and "ghost caribou" (animals moving between images, producing blurring individuals during the photogrammetry processing). Accuracy, precision, and recall of the model were 80%, 90%, and 88%, respectively. Detections between the model and experienced observer were highly correlated (Pearson: 0.96-0.99, P value < 0.05). The model was generally more effective in detecting adults, calves, and ghosts than naïve observers at both altitudes. We also discuss the need to improve consistency of observers' annotations if manual review will be used to train models accurately. Generalization of automated methods for large mammal detections will be necessary for large-scale studies with diverse platforms, airspace restrictions, and sensor capabilities.

摘要

无人机拍摄的图像在野生动物研究和管理中越来越常见,但有效地处理数据仍然是一个挑战。我们开发了一种在大规模镶嵌图像上训练卷积神经网络模型的方法,用于检测和计数驯鹿(Rangifer tarandus),并将模型性能与有经验的观察者和一组无经验的观察者进行比较,同时讨论了航空图像和自动化方法在大型哺乳动物调查中的应用。通过将地面以上 75 米和 120 米处拍摄的图像相结合,使用带有“成年驯鹿”、“幼鹿”和“鬼影驯鹿”标签的注释图像对基于区域的快速卷积神经网络(Faster-RCNN)模型进行了训练(动物在图像之间移动,在摄影测量处理过程中产生模糊个体)。模型的准确性、精度和召回率分别为 80%、90%和 88%。模型和有经验的观察者之间的检测结果高度相关(Pearson:0.96-0.99,P 值<0.05)。在两种高度下,与无经验的观察者相比,该模型在检测成年鹿、幼鹿和鬼影方面通常更有效。我们还讨论了如果需要手动审查来准确训练模型,则需要提高观察者注释的一致性。对于具有不同平台、空域限制和传感器功能的大规模研究,需要推广用于大型哺乳动物检测的自动化方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f9c/9849265/cb47dc0c5c3f/41598_2023_28240_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验