Suppr超能文献

基于结构的κ阿片受体新型拮抗剂和偏向激动剂化学类型的发现

Structure-Based Discovery of New Antagonist and Biased Agonist Chemotypes for the Kappa Opioid Receptor.

作者信息

Zheng Zhong, Huang Xi-Ping, Mangano Thomas J, Zou Rodger, Chen Xin, Zaidi Saheem A, Roth Bryan L, Stevens Raymond C, Katritch Vsevolod

机构信息

Department of Biological Sciences and Department of Chemistry, Bridge Institute, University of Southern California , Los Angeles, California 90089, United States.

出版信息

J Med Chem. 2017 Apr 13;60(7):3070-3081. doi: 10.1021/acs.jmedchem.7b00109. Epub 2017 Apr 3.

Abstract

The ongoing epidemics of opioid overdose raises an urgent need for effective antiaddiction therapies and addiction-free painkillers. The κ-opioid receptor (KOR) has emerged as a promising target for both indications, raising demand for new chemotypes of KOR antagonists as well as G-protein-biased agonists. We employed the crystal structure of the KOR-JDTic complex and ligand-optimized structural templates to perform virtual screening of available compound libraries for new KOR ligands. The prospective virtual screening campaign yielded a high 32% hit rate, identifying novel fragment-like and lead-like chemotypes of KOR ligands. A round of optimization resulted in 11 new submicromolar KOR binders (best K = 90 nM). Functional assessment confirmed at least two compounds as potent KOR antagonists, while compound 81 was identified as a potent G biased agonist for KOR with minimal β-arrestin recruitment. These results support virtual screening as an effective tool for discovery of new lead chemotypes with therapeutically relevant functional profiles.

摘要

阿片类药物过量的持续流行迫切需要有效的抗成瘾疗法和无成瘾性的止痛药。κ-阿片受体(KOR)已成为这两种适应症的一个有前景的靶点,这增加了对新型KOR拮抗剂以及G蛋白偏向性激动剂化学类型的需求。我们利用KOR-JDTic复合物的晶体结构和配体优化的结构模板,对可用化合物库进行虚拟筛选以寻找新的KOR配体。前瞻性虚拟筛选活动产生了高达32%的命中率,确定了KOR配体的新型类片段和类先导化学类型。一轮优化产生了11种新的亚微摩尔级KOR结合剂(最佳K = 90 nM)。功能评估证实至少有两种化合物是有效的KOR拮抗剂,而化合物81被确定为一种有效的KOR G偏向性激动剂,对β-抑制蛋白的招募最少。这些结果支持虚拟筛选作为发现具有治疗相关功能特征的新先导化学类型的有效工具。

相似文献

9
Chemotype-selective modes of action of κ-opioid receptor agonists.κ 阿片受体激动剂的化学型选择性作用模式。
J Biol Chem. 2013 Nov 29;288(48):34470-83. doi: 10.1074/jbc.M113.515668. Epub 2013 Oct 11.

引用本文的文献

5
Computational drug development for membrane protein targets.计算药物研发用于膜蛋白靶标。
Nat Biotechnol. 2024 Feb;42(2):229-242. doi: 10.1038/s41587-023-01987-2. Epub 2024 Feb 15.
6
warpDOCK: Large-Scale Virtual Drug Discovery Using Cloud Infrastructure.WarpDOCK:利用云基础设施进行大规模虚拟药物发现
ACS Omega. 2023 Jul 31;8(32):29143-29149. doi: 10.1021/acsomega.3c02249. eCollection 2023 Aug 15.

本文引用的文献

6
Kappa Antagonist JDTic in Phase 1 Clinical Trial.κ拮抗剂JDTic处于1期临床试验阶段。
Neuropsychopharmacology. 2015 Aug;40(9):2057-8. doi: 10.1038/npp.2015.74.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验