Suppr超能文献

单次功能性电刺激辅助步行会产生与中风后步行力学变化相关的皮质运动对称性改变。

Single Session of Functional Electrical Stimulation-Assisted Walking Produces Corticomotor Symmetry Changes Related to Changes in Poststroke Walking Mechanics.

作者信息

Palmer Jacqueline A, Hsiao HaoYuan, Wright Tamara, Binder-Macleod Stuart A

机构信息

Department of Rehabilitation Medicine, Emory University, 1441 Clifton Rd NE, RG36A, Atlanta, GA 30322 (USA).

Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, Maryland.

出版信息

Phys Ther. 2017 May 1;97(5):550-560. doi: 10.1093/ptj/pzx008.

Abstract

BACKGROUND

Recent research demonstrated that the symmetry of corticomotor drive with the paretic and nonparetic plantarflexor muscles was related to the biomechanical ankle moment strategy that people with chronic stroke used to achieve their greatest walking speeds. Rehabilitation strategies that promote corticomotor balance might improve poststroke walking mechanics and enhance functional ambulation.

OBJECTIVE

The study objectives were to test the effectiveness of a single session of gait training using functional electrical stimulation (FES) to improve plantarflexor corticomotor symmetry and plantarflexion ankle moment symmetry and to determine whether changes in corticomotor symmetry were related to changes in ankle moment symmetry within the session.

DESIGN

This was a repeated-measures crossover study.

METHODS

On separate days, 20 people with chronic stroke completed a session of treadmill walking either with or without the use of FES of their ankle dorsi- and plantarflexor muscles. We calculated plantarflexor corticomotor symmetry using transcranial magnetic stimulation and plantarflexion ankle moment symmetry during walking between the paretic and the nonparetic limbs before and after each session. We compared changes and tested relationships between corticomotor symmetry and ankle moment symmetry following each session.

RESULTS

Following the session with FES, there was an increase in plantarflexor corticomotor symmetry that was related to the observed increase in ankle moment symmetry. In contrast, following the session without FES, there were no changes in corticomotor symmetry or ankle moment symmetry.

LIMITATIONS

No stratification was made on the basis of lesion size, location, or clinical severity.

CONCLUSIONS

These findings demonstrate, for the first time (to our knowledge), the ability of a single session of gait training with FES to induce positive corticomotor plasticity in people in the chronic stage of stroke recovery. They also provide insight into the neurophysiologic mechanisms underlying improvements in biomechanical walking function.

摘要

背景

近期研究表明,皮质运动驱动与患侧和健侧跖屈肌的对称性与慢性中风患者为达到最大步行速度所采用的生物力学踝关节力矩策略有关。促进皮质运动平衡的康复策略可能会改善中风后的步行力学并增强功能性步行能力。

目的

本研究的目的是测试使用功能性电刺激(FES)进行单次步态训练对改善跖屈肌皮质运动对称性和跖屈踝关节力矩对称性的有效性,并确定皮质运动对称性的变化是否与该训练期间踝关节力矩对称性的变化相关。

设计

这是一项重复测量交叉研究。

方法

在不同的日子里,20名慢性中风患者分别在使用或不使用踝关节背屈肌和跖屈肌FES的情况下完成一次跑步机行走训练。我们在每次训练前后,使用经颅磁刺激计算跖屈肌皮质运动对称性,并计算患侧和健侧肢体在行走过程中的跖屈踝关节力矩对称性。我们比较了每次训练后皮质运动对称性和踝关节力矩对称性的变化,并测试了它们之间的关系。

结果

在使用FES的训练后,跖屈肌皮质运动对称性增加,且与观察到的踝关节力矩对称性增加有关。相比之下,在不使用FES的训练后,皮质运动对称性和踝关节力矩对称性均无变化。

局限性

未根据病变大小、位置或临床严重程度进行分层。

结论

据我们所知,这些发现首次证明了单次使用FES的步态训练能够在中风恢复慢性期的患者中诱导积极的皮质运动可塑性。它们还为生物力学步行功能改善背后的神经生理机制提供了见解。

相似文献

3
Symmetry of corticomotor input to plantarflexors influences the propulsive strategy used to increase walking speed post-stroke.
Clin Neurophysiol. 2016 Mar;127(3):1837-44. doi: 10.1016/j.clinph.2015.12.003. Epub 2015 Dec 12.
4
Functional electrical stimulation of ankle plantarflexor and dorsiflexor muscles: effects on poststroke gait.
Stroke. 2009 Dec;40(12):3821-7. doi: 10.1161/STROKEAHA.109.560375. Epub 2009 Oct 15.
5
Articulated ankle-foot-orthosis improves inter-limb propulsion symmetry during walking adaptability task post-stroke.
Clin Biomech (Bristol). 2024 Jun;116:106268. doi: 10.1016/j.clinbiomech.2024.106268. Epub 2024 May 18.
6
Gait training induced change in corticomotor excitability in patients with chronic stroke.
Neurorehabil Neural Repair. 2008 Jan-Feb;22(1):22-30. doi: 10.1177/1545968307301875. Epub 2007 May 16.
9
Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
Neurorehabil Neural Repair. 2016 Sep;30(8):743-52. doi: 10.1177/1545968315624780. Epub 2015 Dec 31.
10
Differential corticomotor mechanisms of ankle motor control in post stroke individuals with and without motor evoked potentials.
Brain Res. 2020 Jul 15;1739:146833. doi: 10.1016/j.brainres.2020.146833. Epub 2020 Apr 13.

引用本文的文献

1
Gait speed-dependent modulation of paretic versus non-paretic propulsion in persons with chronic stroke.
J Neuroeng Rehabil. 2025 May 8;22(1):108. doi: 10.1186/s12984-025-01620-0.
4
A Propulsion Neuroprosthesis Improves Overground Walking in Community-Dwelling Individuals After Stroke.
IEEE Open J Eng Med Biol. 2024 Jul 4;5:563-572. doi: 10.1109/OJEMB.2024.3416028. eCollection 2024.
5
Adaptive Functional Electrical Stimulation Delivers Stimulation Amplitudes Based on Real-Time Gait Biomechanics.
J Med Device. 2024 Jun 1;18(2):021002. doi: 10.1115/1.4065479. Epub 2024 May 21.
7
Corticospinal Responses Following Gait-Specific Training in Stroke Survivors: A Systematic Review.
Int J Environ Res Public Health. 2022 Nov 24;19(23):15585. doi: 10.3390/ijerph192315585.
8
Effect of Functional Electrical Stimulation of the Gluteus Medius during Gait in Patients following a Stroke.
Biomed Res Int. 2020 Nov 19;2020:8659845. doi: 10.1155/2020/8659845. eCollection 2020.
10
Motor Cortical Network Flexibility is Associated With Biomechanical Walking Impairment in Chronic Stroke.
Neurorehabil Neural Repair. 2021 Dec;35(12):1065-1075. doi: 10.1177/15459683211046272. Epub 2021 Sep 27.

本文引用的文献

1
Symmetry of corticomotor input to plantarflexors influences the propulsive strategy used to increase walking speed post-stroke.
Clin Neurophysiol. 2016 Mar;127(3):1837-44. doi: 10.1016/j.clinph.2015.12.003. Epub 2015 Dec 12.
2
Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
Neurorehabil Neural Repair. 2016 Sep;30(8):743-52. doi: 10.1177/1545968315624780. Epub 2015 Dec 31.
3
Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation.
Neuropsychologia. 2015 Dec;79(Pt B):246-55. doi: 10.1016/j.neuropsychologia.2015.07.007. Epub 2015 Jul 9.
4
Atypical cortical drive during activation of the paretic and nonparetic tibialis anterior is related to gait deficits in chronic stroke.
Clin Neurophysiol. 2016 Jan;127(1):716-723. doi: 10.1016/j.clinph.2015.06.013. Epub 2015 Jun 18.
5
Mechanisms to increase propulsive force for individuals poststroke.
J Neuroeng Rehabil. 2015 Apr 18;12:40. doi: 10.1186/s12984-015-0030-8.
8
Paretic Propulsion and Trailing Limb Angle Are Key Determinants of Long-Distance Walking Function After Stroke.
Neurorehabil Neural Repair. 2015 Jul;29(6):499-508. doi: 10.1177/1545968314554625. Epub 2014 Nov 10.
9
Impaired limb shortening following stroke: what's in a name?
PLoS One. 2014 Oct 16;9(10):e110140. doi: 10.1371/journal.pone.0110140. eCollection 2014.
10
Therapeutic effects of functional electrical stimulation on gait in individuals post-stroke.
Ann Biomed Eng. 2015 Feb;43(2):451-66. doi: 10.1007/s10439-014-1148-8. Epub 2014 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验