Department of Chemistry, Michigan State University , 578 S Shaw Lane, East Lansing, Michigan 48824-1322, United States.
ACS Appl Mater Interfaces. 2017 Oct 4;9(39):33544-33548. doi: 10.1021/acsami.7b01626. Epub 2017 Mar 31.
A cobalt(IV/III) redox shuttle, cobalt tris(2-(p-tolyl)pyridine), [Co(ptpy)], was synthesized and investigated for use in dye-sensitized solar cells, DSSCs. An incredibly fast self-exchange rate constant of (9.2 ± 3.9) × 10 M s was determined for [Co(ptpy)], making it an ideal candidate for dye regeneration. To avoid fast recombination and solubility limitations, we utilized a tandem electrolyte containing [Co(ptpy)] and cobalt tris(2,2'-bipyridine), [Co(bpy)]. An improved short circuit current density is achieved for DSSCs employing the tandem electrolyte, compared to electrolytes containing only [Co(bpy)], consistent with superior dye regeneration expected based on predictions using Marcus theory, which is also discussed.
钴(IV/III)氧化还原穿梭体钴三(2-(对甲苯基)吡啶)[Co(ptpy)]被合成并用于染料敏化太阳能电池(DSSC)中。对于[Co(ptpy)],确定了一个非常快的自交换速率常数(9.2 ± 3.9)×10 M s,使其成为染料再生的理想候选物。为了避免快速复合和溶解度限制,我们使用了含有[Co(ptpy)]和钴三(2,2'-联吡啶)[Co(bpy)]的串联电解质。与仅含有[Co(bpy)]的电解质相比,采用串联电解质的 DSSC 实现了更高的短路电流密度,这与基于马库斯理论预测的预期更好的染料再生一致,这也将进行讨论。