Suppr超能文献

基于贝叶斯估计的仿真-优化建模方法的污水交易规划不确定性分析。

Uncertainty analysis for effluent trading planning using a Bayesian estimation-based simulation-optimization modeling approach.

机构信息

MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.

Environment and Energy Systems Engineering Research Center, UR-BNU, Beijing Normal University, Beijing 100875, China.

出版信息

Water Res. 2017 Jun 1;116:159-181. doi: 10.1016/j.watres.2017.03.013. Epub 2017 Mar 6.

Abstract

In this study, a Bayesian estimation-based simulation-optimization modeling approach (BESMA) is developed for identifying effluent trading strategies. BESMA incorporates nutrient fate modeling with soil and water assessment tool (SWAT), Bayesian estimation, and probabilistic-possibilistic interval programming with fuzzy random coefficients (PPI-FRC) within a general framework. Based on the water quality protocols provided by SWAT, posterior distributions of parameters can be analyzed through Bayesian estimation; stochastic characteristic of nutrient loading can be investigated which provides the inputs for the decision making. PPI-FRC can address multiple uncertainties in the form of intervals with fuzzy random boundaries and the associated system risk through incorporating the concept of possibility and necessity measures. The possibility and necessity measures are suitable for optimistic and pessimistic decision making, respectively. BESMA is applied to a real case of effluent trading planning in the Xiangxihe watershed, China. A number of decision alternatives can be obtained under different trading ratios and treatment rates. The results can not only facilitate identification of optimal effluent-trading schemes, but also gain insight into the effects of trading ratio and treatment rate on decision making. The results also reveal that decision maker's preference towards risk would affect decision alternatives on trading scheme as well as system benefit. Compared with the conventional optimization methods, it is proved that BESMA is advantageous in (i) dealing with multiple uncertainties associated with randomness and fuzziness in effluent-trading planning within a multi-source, multi-reach and multi-period context; (ii) reflecting uncertainties existing in nutrient transport behaviors to improve the accuracy in water quality prediction; and (iii) supporting pessimistic and optimistic decision making for effluent trading as well as promoting diversity of decision alternatives.

摘要

在本研究中,开发了一种基于贝叶斯估计的仿真优化建模方法(BESMA),用于确定污水交易策略。BESMA 将营养物命运建模与土壤和水评估工具(SWAT)、贝叶斯估计以及具有模糊随机系数的概率可能性区间规划(PPI-FRC)结合在一个通用框架内。根据 SWAT 提供的水质协议,可以通过贝叶斯估计分析参数的后验分布;可以研究营养物负荷的随机特征,为决策提供输入。PPI-FRC 可以通过将可能性和必要性度量的概念纳入其中,以带有模糊随机边界的区间形式解决多个不确定性问题,并解决相关的系统风险。可能性和必要性度量分别适用于乐观和悲观的决策制定。BESMA 应用于中国香溪河流域污水交易规划的实际案例。在不同的交易比例和处理率下,可以获得许多决策方案。这些结果不仅有助于识别最佳的污水交易方案,还可以深入了解交易比例和处理率对决策的影响。结果还表明,决策者对风险的偏好会影响交易方案和系统效益的决策方案。与传统的优化方法相比,BESMA 在以下方面具有优势:(i)在多源、多河段和多时段的背景下,处理与污水交易规划相关的随机和模糊的多个不确定性;(ii)反映营养物传输行为中存在的不确定性,以提高水质预测的准确性;(iii)支持污水交易的悲观和乐观决策,并促进决策方案的多样性。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验