Suppr超能文献

突变、进化以及自我定义的适合度函数在癌症发生和进展中的核心作用。

Mutations, evolution and the central role of a self-defined fitness function in the initiation and progression of cancer.

机构信息

Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA.

Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA.

出版信息

Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):162-166. doi: 10.1016/j.bbcan.2017.03.005. Epub 2017 Mar 21.

Abstract

The origin and progression of cancer is widely viewed as "somatic evolution" driven by the accumulation of random genetic changes. This theoretical model, however, neglects fundamental conditions for evolution by natural selection, which include competition for survival and a local environmental context. Recent observations that the mutational burden in different cancers can vary by 2 orders of magnitude and that multiple mutations, some of which are "oncogenic," are observed in normal tissue suggests these neglected Darwinian dynamics may play a critical role in modifying the evolutionary consequences of molecular events. Here we discuss evolutionary principles in normal tissue focusing on the dynamical tension between different evolutionary levels of selection. Normal somatic cells within metazoans do not ordinarily evolve because their survival and proliferation are governed by tissue signals and internal controls (e.g. telomere shortening) that maintain homeostatic function. The fitness of each cell is, thus, identical to the whole organism, which is the evolutionary level of selection. For a cell to evolve, it must acquire a self-defined fitness function so that its survival and proliferation is determined entirely by its own heritable phenotypic properties. Cells can develop independence from normal tissue control through randomly accumulating mutations that disrupt its ability to recognize or respond to all host signals. A self-defined fitness function can also be gained non-genetically when tissue control signals are lost due to injury, inflammation, or infection. Accumulating mutations in cells without a self-defined fitness function will produce no evolution - consistent with reports showing mutations, including some that would ordinarily be oncogenic, are present in cells from normal tissue. Furthermore, once evolution begins, Darwinian forces will promote mutations that increase fitness and eliminate those that do not. Thus, cancer cells will typically have a mutational burden similar to adjacent normal cells and many (perhaps most) mutations observed in cancer cells occurred prior to somatic evolution and may not contribute to the cell's malignant phenotype. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.

摘要

癌症的起源和发展通常被认为是由随机遗传变化积累驱动的“体细胞进化”。然而,这个理论模型忽略了自然选择进化的基本条件,包括生存竞争和局部环境背景。最近的观察结果表明,不同癌症中的突变负担可以相差 2 个数量级,并且在正常组织中观察到多个突变,其中一些是“致癌的”,这表明这些被忽视的达尔文动力学可能在改变分子事件的进化后果方面发挥关键作用。在这里,我们讨论正常组织中的进化原则,重点是不同选择层次之间的动态张力。后生动物的正常体细胞通常不会进化,因为它们的生存和增殖受到组织信号和内部控制(例如端粒缩短)的控制,这些控制维持着体内平衡功能。因此,每个细胞的适应性与整个生物体相同,这是选择的进化水平。为了使细胞进化,它必须获得自我定义的适应性函数,以使它的生存和增殖完全由其自身可遗传的表型特性决定。细胞可以通过随机积累突变来获得对正常组织控制的独立性,这些突变破坏了其识别或响应所有宿主信号的能力。当组织控制信号因损伤、炎症或感染而丢失时,也可以通过非遗传方式获得自我定义的适应性函数。没有自我定义的适应性函数的细胞中的积累突变不会产生进化——这与报告一致,这些报告显示突变,包括一些通常是致癌的突变,存在于正常组织的细胞中。此外,一旦进化开始,达尔文力量将促进增加适应性的突变,并消除那些不增加适应性的突变。因此,癌细胞通常会有类似于相邻正常细胞的突变负担,并且在体细胞进化之前就已经发生了许多(也许是大多数)观察到的癌症细胞中的突变,并且这些突变可能不会导致细胞的恶性表型。本文是一个题为“进化原则——癌症中的异质性?”的特刊的一部分,由罗伯特·A·盖滕比博士编辑。

相似文献

1
Mutations, evolution and the central role of a self-defined fitness function in the initiation and progression of cancer.
Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):162-166. doi: 10.1016/j.bbcan.2017.03.005. Epub 2017 Mar 21.
2
Somatic clonal evolution: A selection-centric perspective.
Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):139-150. doi: 10.1016/j.bbcan.2017.01.006. Epub 2017 Feb 2.
3
Changing mutational and adaptive landscapes and the genesis of cancer.
Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):84-94. doi: 10.1016/j.bbcan.2017.01.005. Epub 2017 Feb 4.
4
Tumor evolution: Linear, branching, neutral or punctuated?
Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):151-161. doi: 10.1016/j.bbcan.2017.01.003. Epub 2017 Jan 19.
5
A population genetics perspective on the determinants of intra-tumor heterogeneity.
Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):109-126. doi: 10.1016/j.bbcan.2017.03.001. Epub 2017 Mar 6.
6
Evolutionary scalpels for dissecting tumor ecosystems.
Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):69-83. doi: 10.1016/j.bbcan.2016.11.005. Epub 2016 Dec 5.
7
Mathematical models of cell phenotype regulation and reprogramming: Make cancer cells sensitive again!
Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):167-175. doi: 10.1016/j.bbcan.2017.04.001. Epub 2017 Apr 7.
8
Cancer biology and Mr. Darwin.
Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):67-68. doi: 10.1016/j.bbcan.2017.04.003. Epub 2017 Apr 12.
9
Catch my drift? Making sense of genomic intra-tumour heterogeneity.
Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):95-100. doi: 10.1016/j.bbcan.2016.12.003. Epub 2017 Jan 7.
10
Advances in understanding tumour evolution through single-cell sequencing.
Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):127-138. doi: 10.1016/j.bbcan.2017.02.001. Epub 2017 Feb 11.

引用本文的文献

1
Applying multilevel selection to understand cancer evolution and progression.
PLoS Biol. 2025 Jul 18;23(7):e3003290. doi: 10.1371/journal.pbio.3003290. eCollection 2025 Jul.
2
Parallel and convergent dynamics in the evolution of primary breast and lung adenocarcinomas.
Commun Biol. 2025 May 21;8(1):775. doi: 10.1038/s42003-025-08123-7.
3
Evolution of transmissible cancers: An adaptive, plastic strategy of selfish genetic elements?
iScience. 2024 Aug 20;27(9):110740. doi: 10.1016/j.isci.2024.110740. eCollection 2024 Sep 20.
5
Updating the Definition of Cancer.
Mol Cancer Res. 2023 Nov 1;21(11):1142-1147. doi: 10.1158/1541-7786.MCR-23-0411.

本文引用的文献

2
HIGH LEVELS OF PHENOTYPIC VARIABILITY OF METAL AND TEMPERATURE TOLERANCE IN PARAMECIUM.
Evolution. 1983 Mar;37(2):341-357. doi: 10.1111/j.1558-5646.1983.tb05544.x.
3
Why Darwin would have loved evolutionary game theory.
Proc Biol Sci. 2016 Sep 14;283(1838). doi: 10.1098/rspb.2016.0847.
4
Somatic Mutation Theory - Why it's Wrong for Most Cancers.
Cell Physiol Biochem. 2016;38(5):1663-80. doi: 10.1159/000443106. Epub 2016 May 3.
8
Cancer: evolution within a lifetime.
Annu Rev Genet. 2014;48:215-36. doi: 10.1146/annurev-genet-120213-092314. Epub 2014 Oct 1.
9
Mutational signatures: the patterns of somatic mutations hidden in cancer genomes.
Curr Opin Genet Dev. 2014 Feb;24(100):52-60. doi: 10.1016/j.gde.2013.11.014. Epub 2013 Dec 29.
10
The mating system of the cellular slime mould Dictyostelium discoideum.
Curr Genet. 1980 Apr;1(3):229-32. doi: 10.1007/BF00390948.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验