Rubez Gaëtan, Etancelin Jean-Matthieu, Vigouroux Xavier, Krajecki Michael, Boisson Jean-Charles, Hénon Eric
Parallel Computing division, ATOS Company, 1 rue de Provence, Echirolles, 38130, France.
Departmant of Computer Science, CReSTIC (Centre de Recherche en STIC) EA3804, University of Reims Champagne-Ardenne, Moulin de la Housse, Reims, 51687, France.
J Comput Chem. 2017 May 30;38(14):1071-1083. doi: 10.1002/jcc.24786. Epub 2017 Mar 25.
The NCI approach is a modern tool to reveal chemical noncovalent interactions. It is particularly attractive to describe ligand-protein binding. A custom implementation for NCI using promolecular density is presented. It is designed to leverage the computational power of NVIDIA graphics processing unit (GPU) accelerators through the CUDA programming model. The code performances of three versions are examined on a test set of 144 systems. NCI calculations are particularly well suited to the GPU architecture, which reduces drastically the computational time. On a single compute node, the dual-GPU version leads to a 39-fold improvement for the biggest instance compared to the optimal OpenMP parallel run (C code, icc compiler) with 16 CPU cores. Energy consumption measurements carried out on both CPU and GPU NCI tests show that the GPU approach provides substantial energy savings. © 2017 Wiley Periodicals, Inc.
美国国家癌症研究所(NCI)的方法是揭示化学非共价相互作用的一种现代工具。它在描述配体 - 蛋白质结合方面特别有吸引力。本文介绍了一种使用前分子密度的NCI自定义实现方法。它旨在通过CUDA编程模型利用NVIDIA图形处理单元(GPU)加速器的计算能力。在144个系统的测试集上检查了三个版本的代码性能。NCI计算特别适合GPU架构,这极大地减少了计算时间。在单个计算节点上,与具有16个CPU核心的最佳OpenMP并行运行(C代码,icc编译器)相比,双GPU版本在最大实例上的计算速度提高了39倍。在CPU和GPU的NCI测试中进行的能耗测量表明,GPU方法可大幅节省能源。©2017威利期刊公司。