Abdellah Marwan, Eldeib Ayman, Sharawi Amr
Biomedical Engineering Department, Cairo University, Giza 12613, Egypt.
Int J Biomed Imaging. 2015;2015:590727. doi: 10.1155/2015/590727. Epub 2015 Feb 19.
Fourier volume rendering (FVR) is a significant visualization technique that has been used widely in digital radiography. As a result of its 𝒪(N (2)logN) time complexity, it provides a faster alternative to spatial domain volume rendering algorithms that are 𝒪(N (3)) computationally complex. Relying on the Fourier projection-slice theorem, this technique operates on the spectral representation of a 3D volume instead of processing its spatial representation to generate attenuation-only projections that look like X-ray radiographs. Due to the rapid evolution of its underlying architecture, the graphics processing unit (GPU) became an attractive competent platform that can deliver giant computational raw power compared to the central processing unit (CPU) on a per-dollar-basis. The introduction of the compute unified device architecture (CUDA) technology enables embarrassingly-parallel algorithms to run efficiently on CUDA-capable GPU architectures. In this work, a high performance GPU-accelerated implementation of the FVR pipeline on CUDA-enabled GPUs is presented. This proposed implementation can achieve a speed-up of 117x compared to a single-threaded hybrid implementation that uses the CPU and GPU together by taking advantage of executing the rendering pipeline entirely on recent GPU architectures.
傅里叶体绘制(FVR)是一种重要的可视化技术,已在数字射线照相中广泛应用。由于其时间复杂度为𝒪(N (2)logN),它为计算复杂度为𝒪(N (3))的空间域体绘制算法提供了一种更快的替代方案。该技术依赖于傅里叶投影切片定理,对三维体数据的频谱表示进行操作,而不是处理其空间表示来生成类似X光射线照片的仅含衰减信息的投影。由于其底层架构的快速发展,图形处理单元(GPU)成为了一个有吸引力的高性能平台,与中央处理器(CPU)相比,每美元能提供巨大的计算能力。计算统一设备架构(CUDA)技术的引入,使得易于并行化的算法能够在支持CUDA的GPU架构上高效运行。在这项工作中,提出了一种在支持CUDA的GPU上对FVR管道进行高性能GPU加速的实现方案。与通过利用在最新GPU架构上完全执行渲染管道而将CPU和GPU一起使用的单线程混合实现相比,该方案可实现117倍的加速。