Suppr超能文献

使用离散小波变换(DWT)、离散余弦变换(DCT)特征和黄斑病变指数的自动糖尿病性黄斑水肿(DME)分级系统。

Automated diabetic macular edema (DME) grading system using DWT, DCT Features and maculopathy index.

作者信息

Acharya U Rajendra, Mookiah Muthu Rama Krishnan, Koh Joel E W, Tan Jen Hong, Bhandary Sulatha V, Rao A Krishna, Hagiwara Yuki, Chua Chua Kuang, Laude Augustinus

机构信息

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, SIM University, Singapore 599491, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Malaysia.

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore.

出版信息

Comput Biol Med. 2017 May 1;84:59-68. doi: 10.1016/j.compbiomed.2017.03.016. Epub 2017 Mar 19.

Abstract

The cause of diabetic macular edema (DME) is due to prolonged and uncontrolled diabetes mellitus (DM) which affects the vision of diabetic subjects. DME is graded based on the exudate location from the macula. It is clinically diagnosed using fundus images which is tedious and time-consuming. Regular eye screening and subsequent treatment may prevent the vision loss. Hence, in this work, a hybrid system based on Radon transform (RT), discrete wavelet transform (DWT) and discrete cosine transform (DCT) are proposed for an automated detection of DME. The fundus images are subjected to RT to obtain sinograms and DWT is applied on these sinograms to extract wavelet coefficients (approximate, horizontal, vertical and diagonal). DCT is applied on approximate coefficients to obtain 2D-DCT coefficients. Further, these coefficients are converted into 1D vector by arranging the coefficients in zig-zag manner. This 1D signal is subjected to locality sensitive discriminant analysis (LSDA). Finally, various supervised classifiers are used to classify the three classes using significant features. Our proposed technique yielded a classification accuracy of 100% and 97.01% using two and seven significant features for private and public (MESSIDOR) databases respectively. Also, a maculopathy index is formulated with two significant parameters to discriminate the three groups distinctly using a single integer. Hence, our obtained results suggest that this system can be used as an eye screening tool for diabetic subjects for DME.

摘要

糖尿病性黄斑水肿(DME)的病因是糖尿病(DM)长期未得到控制,这会影响糖尿病患者的视力。DME根据黄斑处渗出物的位置进行分级。临床上通过眼底图像进行诊断,这既繁琐又耗时。定期眼部筛查及后续治疗可预防视力丧失。因此,在这项工作中,提出了一种基于拉东变换(RT)、离散小波变换(DWT)和离散余弦变换(DCT)的混合系统,用于自动检测DME。对眼底图像进行拉东变换以获得正弦图,并将离散小波变换应用于这些正弦图以提取小波系数(近似系数、水平系数、垂直系数和对角系数)。对近似系数应用离散余弦变换以获得二维离散余弦变换系数。此外,通过以之字形排列这些系数将其转换为一维向量。对该一维信号进行局部敏感判别分析(LSDA)。最后,使用各种监督分类器利用显著特征对三个类别进行分类。我们提出的技术分别使用两个和七个显著特征,对私有数据库和公共(MESSIDOR)数据库的分类准确率分别为100%和97.01%。此外,还制定了一个黄斑病变指数,该指数包含两个显著参数,用一个整数就能清晰地区分这三个组。因此,我们得到的结果表明,该系统可作为糖尿病患者DME的眼部筛查工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验