Suppr超能文献

高阶谱在糖尿病性黄斑病变自动分级中的应用。

Application of higher-order spectra for automated grading of diabetic maculopathy.

作者信息

Mookiah Muthu Rama Krishnan, Acharya U Rajendra, Chandran Vinod, Martis Roshan Joy, Tan Jen Hong, Koh Joel E W, Chua Chua Kuang, Tong Louis, Laude Augustinus

机构信息

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Clementi, 599489, Singapore.

Department of Biomedical Engineering, School of Science and Technology, SIM University, Clementi, 599491, Singapore.

出版信息

Med Biol Eng Comput. 2015 Dec;53(12):1319-31. doi: 10.1007/s11517-015-1278-7. Epub 2015 Apr 18.

Abstract

Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39% for MESSIDOR dataset and 95.93 and 93.33% for local dataset, respectively.

摘要

糖尿病性黄斑水肿(DME)是糖尿病患者视力丧失的最常见原因之一。早期检测和连续治疗可能会提高视力。根据黄斑区硬性渗出物的位置,DME主要分为非临床显著性黄斑水肿(NCSME)和临床显著性黄斑水肿。DME可通过眼底图像的人工检查来识别。这既费力又耗费资源。因此,在这项工作中,提出了利用眼底图像的Radon变换投影的高阶谱(HOS)对DME进行自动分级。在这项工作中,我们使用三阶累积量和双谱幅度作为特征,并比较了它们的性能。它们可以捕捉眼底图像中的细微变化。谱回归判别分析(SRDA)降低了特征维度,并使用最小冗余最大相关方法对重要的SRDA分量进行排序。将排序后的特征输入到各种监督分类器中,即朴素贝叶斯、AdaBoost和支持向量机,以区分无DME、NCSME和临床显著性黄斑水肿类别。我们使用公开可用的MESSIDOR数据集(300张图像)对系统性能进行了评估,并使用本地数据集(300张图像)进行了验证。我们的结果表明,对于MESSIDOR数据集,HOS累积量和双谱幅度的平均准确率分别为95.56%和94.39%,对于本地数据集,平均准确率分别为95.93%和93.33%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验