Suppr超能文献

基于优势本征模态和混合效应模型的前列腺癌放射治疗中膀胱运动和变形的人群模型。

Population model of bladder motion and deformation based on dominant eigenmodes and mixed-effects models in prostate cancer radiotherapy.

机构信息

INSERM, U1099, F-35000 Rennes, France; Université de Rennes 1, LTSI, F-35000 Rennes, France; Universidad Nacional de Colombia, Facultad de Minas, GAUNAL, Medellín, Colombia.

INSERM, U1099, F-35000 Rennes, France; Université de Rennes 1, LTSI, F-35000 Rennes, France; CRLCC Eugène Marquis, Département de Radiothérapie, F-35000 Rennes, France.

出版信息

Med Image Anal. 2017 May;38:133-149. doi: 10.1016/j.media.2017.03.001. Epub 2017 Mar 8.

Abstract

In radiotherapy for prostate cancer irradiation of neighboring organs at risk may lead to undesirable side-effects. Given this setting, the bladder presents the largest inter-fraction shape variations hampering the computation of the actual delivered dose vs. planned dose. This paper proposes a population model, based on longitudinal data, able to estimate the probability of bladder presence during treatment, using only the planning computed tomography (CT) scan as input information. As in previously-proposed principal component analysis (PCA) population-based models, we have used the data to obtain the dominant eigenmodes that describe bladder geometric variations between fractions. However, we have used a longitudinal analysis along each mode in order to properly characterize patient's variance from the total population variance. We have proposed is a mixed-effects (ME) model in order to separate intra- and inter-patient variability, in an effort to control confounding cohort effects. Other than using PCA, bladder shapes are represented by using spherical harmonics (SPHARM) that additionally enables data compression without information lost. Based on training data from repeated CT scans, the ME model was thus implemented following dimensionality reduction by means of SPHARM and PCA. We have evaluated the model in a leave-one-out cross validation framework on the training data but also using independent data. Probability maps (PMs) were thus generated with several draws from the learnt model as predicted regions where the bladder will likely move and deform. These PMs were compared with the actual regions using metrics based on mutual information distance and misestimated voxels. The prediction was also compared with two previous population PCA-based models. The proposed model was able to reduce the uncertainties in the estimation of the probable region of bladder motion and deformation. This model can thus be used for tailoring radiotherapy treatments.

摘要

在前列腺癌的放射治疗中,对邻近的危险器官进行照射可能会导致不良的副作用。在这种情况下,膀胱呈现出最大的分次间形状变化,这阻碍了实际所给予剂量与计划剂量的计算。本文提出了一种基于纵向数据的群体模型,该模型能够仅使用计划的计算机断层扫描(CT)扫描作为输入信息,来估计治疗期间膀胱存在的概率。与之前提出的基于主成分分析(PCA)的群体模型一样,我们使用数据获得了描述分次间膀胱几何变化的主要本征模态。然而,我们沿着每个模态进行了纵向分析,以正确描述患者与总群体方差的差异。我们提出了一种混合效应(ME)模型,以分离患者内和患者间的可变性,从而控制混杂队列的影响。除了使用 PCA 外,我们还使用了球形谐波(SPHARM)来表示膀胱形状,这还可以在不丢失信息的情况下实现数据压缩。基于重复 CT 扫描的训练数据,我们通过 SPHARM 和 PCA 实现了 ME 模型,随后进行了降维。我们在训练数据上进行了留一法交叉验证框架下的模型评估,但也使用了独立数据。因此,从学习模型中进行了多次抽取,生成了概率图(PM),作为膀胱可能移动和变形的预测区域。通过基于互信息距离和误估计体素的度量标准,将这些 PM 与实际区域进行了比较。还将预测与之前的两个基于 PCA 的群体模型进行了比较。提出的模型能够降低对膀胱运动和变形的可能区域进行估计的不确定性。因此,该模型可用于定制放射治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验